
The Finite Element Method

applied to Selected Differential Equations

by Patryk Drozd and Adriana Voloshyna

Computational Physics Project
Maynooth University

2024

Contents

1 Background 2

2 Introduction 2
2.1 Computational Methods . 2
2.2 Background of the Finite Element Method . 3

3 One Dimensional Poisson Problem 3
3.1 Derivation of the Weak Formulation . 3
3.2 Discretisation of the the Function Space . 4
3.3 Basis Functions . 5
3.4 Discretisation of the Weak Formulation . 5
3.5 Linear System Representation . 6
3.6 Matrix A . 6
3.7 Matrix F . 6
3.8 Numerical Implementation and Solution . 7

4 Two Dimensional Poisson Problem 8
4.1 The Weak Formulation . 9
4.2 Basis Functions and Discretisation . 9
4.3 Implementation and Results . 11
4.4 Another Two Dimensional Poisson Problem . 12
4.5 A note on Error Analysis . 13

5 Heat Equation 13
5.1 Discretisation of Time . 14
5.2 The Weak Formulation and Spacial Discretisation . 14
5.3 Implementation and Results . 15

6 Stokes Equations 16
6.1 The Weak Formulation . 16
6.2 Basis Functions . 17
6.3 Discretisation of the Weak Formulation . 18
6.4 Matrix Formulation . 20
6.5 Implementation and Results . 21
6.6 Error Analysis . 23

7 Conclusion 24

8 Further Reading 25

9 Acknowledgements 25

10 References 25

11 Code 26

1

1 Background

There is no doubt that differential equations are ubiquitous in all of physics, and yet often times
they can be difficult to solve analytically. Scientists and engineers therefore turn to computational
methods in hopes of finding solutions to the differential equations which govern the most fundamental
laws of physics. For example, one such set of differential equations are the Navier-Stokes equations,
which remain the most reliable tool in understanding the motion of fluids. [1] Despite the widespread
practicality of these equations, there is still much to be studied about them. In fact it has not
been proven that these equations always have smooth (i.e. infinitely differentiable) solutions in three
dimensions. [2] This conundrum is of great interest to the mathematical community, and is one of the
seven Millennium Prize Problems, meaning that the Clay Mathematics Institute has offered a prize
of one million US dollars for the first correct proof of existence and smoothness or a counterexample.
Inspired by the mystery of these equations, we set out to investigate this intriguing world of differential
equations using a particular algorithm known as the Finite Element Method (FEM).

2 Introduction

The aim of this project is to solve a number of ordinary and partial differential equations using FEM.
To do this, we must begin by studying the mathematical background of the method. A significant
portion of this report will focus on the derivation of the necessary tools needed to justify the credibility
of this method. A walk-through of the implementation of the method for specific problems will also
be provided, alongside results that we obtain from solving these problems.

2.1 Computational Methods

Before choosing our method of computation, we investigated the strengths and weaknesses of several
computational methods, such as the Finite Volume Method, Finite Difference Method, and the Finite
Element Method.

The Finite Volume Method involves subdividing a space (or volume) into a finite number of cells,
creating a discretised collection of what are known as control volumes. Given a partial differential
equation which can be written in divergence form, we can use Gauss’ Divergence Theorem to rewrite
a volume integral into a surface integral, and calculate the flux at each of the surfaces of the cells.
This method relies on the conservation of flux, i.e. that the outward flux in each cell must be equal
in magnitude to the inward flux entering the cell. [3]

The Finite Difference Method is the most straightforward way to numerically solve a system of
differential equations. The domain is discretised into a finite set nodal points, and the derivatives in
question are approximated using finite difference (usually a central finite difference). This just means
that we take the definition of a derivative from First Principles, but instead of finding the limit as the
differential (the small change in x) goes to zero, we give it a very small but non-zero value. Then, for
each nodal point we can find the value of a solution at that point, which together gives a numerical
solution to a given system of differential equations. This method is efficient in computing solutions
on a rectangular domain, but it is difficult to implement on an irregularly shaped domain. [4]

The Finite Element Method also begins with discretising a domain into a finite number of elements.
These elements are geometric shapes which together create a mesh for the given domain. To obtain
a solution, a set of differential equations together with boundary conditions must first be expressed
in what is known as the weak formulation. Then, for a given set of basis functions, we can find a
solution for each element of the mesh and together this gives a solution to the system. This method is
more mathematically involved than the others and has the least limitations on what type of equations
or domains it can be used for.[5] We thus decided that this method would not only be best suited to
finding solutions to various types of differential equations, but also would be interesting to study from
a more mathematical perspective.

2

2.2 Background of the Finite Element Method

The Finite Element Method is a popular numerical method of solving differential equations. It can
accurately approximate a solution to a boundary value problem when analytic solutions are difficult
or impossible to find. Using this method we can model and study physical phenomena such as heat
transfer, structural behaviour, fluid flow and electromagnetic potential. Finite Element Analysis is
often used in engineering as it can accurately replicate simulations of different types of conditions in
a cost effective, safe and efficient way. A very early example of this was NASTRAN, an open source
Finite Element Analysis program developed for NASA in the 1960s to aid engineers in structural
analysis. The program was so successful that it is still used in aerospace, maritime and automotive
industries across the globe today. [6]

3 One Dimensional Poisson Problem

[7][8] To gain an understanding of the algorithm behind the Finite Element Method, we begin by
solving the one dimensional Poisson problem. This problem is an easy differential equation to begin
our investigation with, and has many physical applications, such as in finding magnetic or electric
potential due to charge or current distributions.
Thus we want to find solutions u which satisfy the differential equation

−∇2u = f on domain Ω

with the boundary condition

u = 0 on ∂Ω

Note that in the one dimensional case, the Laplacian ∇2 is simply the second derivative of u. Taking
the domain to be the interval [0,1], the differential equation reduces to

−u′′ = f on [0, 1]

and the boundary condition can be written as

u(0) = u(1) = 0.

The above is what is known as the strong formulation of the Poisson problem. We can express
this alternatively using the weak formulation.

3.1 Derivation of the Weak Formulation

The weak formulation of the one dimensional Poisson problem can be described as follows:

Given a function space

V vcentcolon = {v| v is continuous on [0,1], v′ is piecewise continuous and bounded on [0, 1], v(0) = v(1) = 0}

we must find a u ϵ V such that
(u′, ϕ′) = (f, ϕ) ∀ϕ ϵ V

where (u, v) :=
∫ 1

0
u(x)v(x) dx is the scalar product of functions u and v on [0,1].

To see that these formulations are equivalent, observe that if −u′′ = f , we can multiply both sides by
a test function ϕ and integrate over our domain to obtain

−
∫ 1

0

u′′(x)ϕ(x) dx =

∫ 1

0

f(x)ϕ(x) dx ∀ϕ ϵ V

3

after which we can use integration by parts to rewrite this as

−([u′(x)ϕ(x)]10 +

∫ 1

0

u′(x)ϕ′(x) dx) =

∫ 1

0

u′(x)ϕ′(x) dx− [u′(1)ϕ(1)− u′(0)ϕ(0)] =

∫ 1

0

f(x)ϕ(x) dx ∀ϕ ϵ V.

But since ϕ ϵ V , it must satisfy the boundary conditions ϕ(0) = ϕ(1) = 0, which causes the above to
reduce to ∫ 1

0

u′(x)ϕ′(x) dx =

∫ 1

0

f(x)ϕ(x) dx ∀ϕ ϵ V as required.

To show implication in the other direction, and therefore proving equivalence, we repeat the steps
above in the reverse direction. Let

(u′, ϕ′) = (f, ϕ) ∀ϕ ϵ V

and take away zero from the left side of the equation by using the boundary conditions which ϕ must
satisfy

(u′, ϕ′)− [u′(1)ϕ(1)− u′(0)ϕ(0)] = (f, ϕ) ∀ϕ ϵ V.

We observe that the above can be reduced to

(−u′′, ϕ) = (f, ϕ)

which can be rewritten as
(−u′′, ϕ)− (f, ϕ) = (u′′ − f, ϕ) = 0

Since this must hold ∀ϕ ϵ V , we can conclude that

−u′′ − f = 0 on [0, 1]

and so we have that the strong and weak form are equivalent.

3.2 Discretisation of the the Function Space

Since computers of our age are not comfortable with infinities, we must discretise the infinite dimen-
sional function space V , into a finite dimensional subspace Vh. To do so, we must create a mesh on
which we will use basis functions to approximate a solution to our problem. This mesh provides a
way of dividing our continuous domain, in this case the interval [0,1], into a finite amount of nodal
points (or vertices) xi with x0 = 0,..., xn = 1.

On the interval between each nodal point (xi, xi+1), we can define a Finite Element (K,P,Σ)
where
- K is a cell of the mesh, also called an element
- P are polynomials on K and
- Σ is a set of degrees of freedom.
Note that for this problem we will be working only with Σ = 1, as our basis functions will be linear.
Later on we will see an example of quadratic basis functions, which have Σ = 2, but for the purpose
of solving the one dimensional Poisson problem, this would add an unnecessary degree of complexity.

Now we have the tools to construct our finite dimensional subspace,

Vh := {v| v is continuous on [0,1], v|Ki
ϵ P for each i, v(0) = v(1) = 0}.

4

3.3 Basis Functions

The basis functions ϕi are simple polynomials which can be used to describe an element of our
finite dimensional subspace Vh. A function v has a unique representation in Vh given by vh(x) =∑n

i=0 viϕi(x) where n is the amount of nodal points in our interval, as before. Each basis function
will be scaled by a constant vi, and must satisfy

ϕi(xj) =

{
1 i = j

0 i ̸= j.

Say for example we want to construct a function vh(x) = 1·ϕ0.25(x)+1·ϕ0.5(x)+1·ϕ0.75(x). Figure 1 on
the left shows how the sum of the individual (scaled) bases superimpose to form our function. Similarly
we can scale the basis functions to construct a function vh(x) = 1 · ϕ0.25(x) + 3 · ϕ0.5(x) + 2 · ϕ0.75(x),
as can be seen in figure 2.

Figure 1: Sum of linear bases Figure 2: Sum of scaled linear bases

3.4 Discretisation of the Weak Formulation

The weak form of the Poisson problem can now be discretised to the following: For a function space
Vh (as described previously), we must find a uh ϵ Vh such that

(u′h, ϕ
′
h) = (f, ϕh) ∀ϕh ϵ Vh.

We can write u′h in terms of its basis functions to obtain:

((

n∑
j=0

ujϕj)
′, ϕ′h) = (f, ϕh) ∀ϕh ϵ Vh.

Furthermore, since any function ϕh can be written as a linear composition of basis functions, it is
enough to show that

((

n∑
j=0

ujϕj)
′, ϕ′i) = (f, ϕi) ∀ 0 ≤ i ≤ n

⇐⇒
n∑

j=0

uj(ϕ
′
j , ϕ

′
i) = (f, ϕi) ∀ 0 ≤ i ≤ n.

Now we search for a sequence of constants (uj) which satisfy the equivalence above.

5

3.5 Linear System Representation

To do this computationally, we can represent the linear system in the form of a matrix equation
(ϕ′1, ϕ

′
1) (ϕ′1, ϕ

′
2) . . . (ϕ′1, ϕ

′
n)

(ϕ′2, ϕ
′
1) (ϕ′2, ϕ

′
2) . . . (ϕ′2, ϕ

′
n)

...
...

. . .
...

(ϕ′n, ϕ
′
1) (ϕ′n, ϕ

′
2) . . . (ϕ′n, ϕ

′
n)

u1
u2
...
un

 =

(f, ϕ1)
(f, ϕ2)

...
(f, ϕn)

to find a vector u⃗ ϵ Rn which satisfies this equation. For clarity, let us rewrite the above equation as

Au⃗ = F

Solving a linear system like this is not difficult - we simply multiply both sides of the equation with
the inverse of A to obtain what u⃗ is equal to. All that remains is to find the components of A, i.e.
the scalar product of the basis functions.

3.6 Matrix A

Due to the symmetry of the matrix, we begin by solving the diagonal elements, which are all of the
form (ϕ′i, ϕ

′
i). Lets take a look at one basis function ϕi which is non-zero only on the interval [xi−1,

xi+1]. If h is the distance from xi−1 to xi and the height of the basis function is set to 1, then

ϕi(x) =
x

h
when restricted to the interval [xi−1, xi].

By symmetry,

ϕi(x) = 1− x

h
on the interval [xi, xi+1].

Then∫ 1

0

ϕ′i(x)ϕ
′
i(x) dx =

∫ xi+1

xi−1

ϕ′i(x)ϕ
′
i(x) dx =

∫ xi

xi−1

(
1

h

)(
1

h

)
dx +

∫ xi+1

xi

(
− 1

h

)(
− 1

h

)
dx

=
[x
h2

]xi

xi−1

+
[x
h2

]xi+1

xi

=
h

h2
+

h

h2
=

2

h
.

Now to find the elements next to the diagonal, we must calculate (ϕ′i, ϕ
′
i+1) = (ϕ′i+1, ϕ

′
i). Since ϕi = 0

anywhere outside the interval [xi−1, xi+1], we can limit our integral to the same interval. Moreover,
ϕi+1 = 0 on the interval [xi−1, xi], so we can further restrict our limits of integration to xi and xi+1.∫ xi+1

xi

ϕ′i(x)ϕ
′
i+1(x) dx =

∫ xi+1

xi

(
− 1

h

)(
1

h

)
dx =

[
− x

h2

]xi+1

xi

= − 1

h
.

Finally observe that any matrix elements other than those which we have calculated must equal to
zero, as the two basis functions in the scalar product will never be non-zero on the same interval.
This matrix is also clearly symmetric. This comes from the fact that basis elements commute, i.e.
ϕiϕj = ϕjϕi.

3.7 Matrix F

To begin solving the left hand side of the equation, we must chose a function f . For the sake of
simplicity, let f = 1. Then, for any basis function ϕi(x),

(f, ϕi) =

∫ 1

0

f(x)ϕi(x) dx = (1)

∫ xi+1

xi−1

ϕi(x) dx =

∫ xi

xi−1

(x
h

)
dx +

∫ xi+1

xi

(
1− x

h

)
dx = h.

6

3.8 Numerical Implementation and Solution

Although it is possible to solve the scalar products of basis functions analytically, it can become te-
dious for large mesh sizes and non linear basis functions. Using the trapezoidal integration function
np.trapz, we can solve for the elements of the matrix numerically. To see that this numerical method
can reproduce the same results that we achieved analytically, we plotted the elements of the matrix
A. Observe in figures 5 and 6 the results for a system with 9 nodal points and a system with 50 nodal
points. Indeed we get a tridiagonal symmetric matrix with non-zero elements only along the diagonal
and the upper and lower diagonal.

Figure 3: Matrix A for 9 nodal points Figure 4: Matrix A for 50 nodal points

Now that we have a linear system Au⃗ = F , and the tools to obtain this equation numerically, we
can look for solutions u⃗. To do this, it is necessary to create three nested for loops. For each element
of our mesh, we find the scalar product of our function f with our basis functions ϕi for all i. Then,
for each basis function ϕi, we take the scalar product of ϕi and ϕj , for all j, which gives us a row of
the matrix A for each iteration of i. Using numpy.linalg.pinv we find the inverse of this matrix, and
thus solve for u⃗. We can then plot u⃗ to see the solutions to the one dimensional Poisson problem.
These plots can be seen in in figures 5 and 6. Note how the curve is smoother when we consider a
finer mesh with more nodal points.

We also consider f = x, and obtain a solution for u⃗ which can be seen in figure 7.

To check that our solutions are correct, we compare our numerical results to the analytic solutions of
these equations. Using our knowledge of second-order linear ordinary differential equations, we obtain
the analytic solutions

u(x) =
1

2
x(x− 1) for f(x) = 1,

u(x) =
1

6
x(x2 − 1) for f(x) = x.

If we plot these functions we can see that for a sufficient number of nodal points n our numerical
solutions are an accurate approximation of the analytic solutions.

7

Figure 5: Solutions for various mesh sizes Figure 6: Solution for 50 nodal points

Figure 7: Solution for 50 nodal points

4 Two Dimensional Poisson Problem

To solve the two dimensional Poisson problem [9], we wish to find a function u(x, y) which satisfies

∇2u = f on Ω with mixed Neumann and Dirichlet boundary conditions.

Here the domain is a unit length square [0, 1]× [0, 1], and the Laplacian ∇2 = ∂2

∂x2 + ∂2

∂y2
. We decided

to experiment with the types of boundary conditions which we can impose. The motivation behind
this was the idea that often in physics we have a fluid which flows in from one end of a ”box”, i.e. we
enforce that our solution has a non zero derivative on one side of our domain, and it dissipates on the
remaining boundaries of the domain. We therefore impose Neumann boundary conditions (boundary
conditions on the directional derivative of u as opposed to u itself) of the form

∇u(x, y) · n̂ = −x(x− 1) ∀ (x, y) ϵ ∂ΩN ⊂ ∂Ω,

and the Dirichlet boundary conditions are u(x, y) = 0 on ∂ΩD ⊂ ∂Ω and we choose

∂ΩN = {1} × [0, 1] and ∂ΩD = ({0} × [0, 1]) ∪ ([0, 1]× {0}) ∪ ([0, 1]× {1}).

8

The two dimensional Poisson problem can also be written in its weak formulation. To do this, we
must first define an infinite dimensional function space:

V := {v(x, y)| v,∇v ϵL2(Ω), v = 0 on ∂ΩD}.

Here L2(Ω) is a space of functions which are square integrable on the given domain. [10] The reason
we need to introduce a slightly complicated function space, is to ensure uniqueness of a solution.
When we proceed to search for solutions on our mesh, we could encounter problems of uniqueness of
a function at the boundary of each cell. But since a line has Lebesgue Measure zero (meaning that a
line in the real plane does not contribute to the value of an integral), we can surpass this problem by
defining functions to be in a sense equal if they have the same ”size”, i.e. they are equal in their L2

norm. In this test space, we only restrict our functions with the Dirichlet boundary condition and not
the Neumann boundary condition. The latter will appear in the weak formulation of the problem.

4.1 The Weak Formulation

Now we can find the weak formulation of the Poisson problem in the same way as we did previously.
[11] We multiply both sides of the equation by a test function ϕ(x, y) and integrate both sides over the
entire domain. Then using integration by parts (in particular an application of Green’s first identity)
and applying the Dirichlet boundary condition we obtain∫

Ω

∇2uϕ dxdy = −
∫
Ω

∇u · ∇ϕdxdy +
∫
∂Ω

∇u · n̂ ϕ dxdy =

∫
Ω

f(x, y)ϕ(x, y) dxdy ∀ϕ ϵ V.

Implementing the Neumann boundary conditions gives∫
Ω

∇u · ∇ϕdxdy = −
∫
Ω

fϕ dxdy −
∫
∂ΩN

x(x− 1)ϕdxdy ∀ϕ ϵ V.

4.2 Basis Functions and Discretisation

We once again only consider a discretised subspace of V , namely Vh where we restrict each vh ϵ Vh
to be polynomial on each element of our mesh. We similarly define basis functions ϕi to describe
the functions in our discretised subspace, except this time the basis functions must describe two
dimensional functions. This is done by subdividing the square [0, 1]× [0, 1] into a grid of n×n smaller
squares. On each such square, we want a basis function to be 1 on one corner of the square and 0 on
the other three. This can be achieved by taking the product of a basis function on the x-axis with a
similar basis function on the y-axis, i.e.

ϕab(x, y) = ϕa(x) · ϕb(y).

But we also want the neighbouring three squares to peak at the same point, i.e. we want to create an
almost pyramidal shape across four adjacent squares. Letting h be the length of each interval (and
therefore also the side length of each square) we can define

ϕi(x, y) :=

ϕ00(x, y) =
xy
h2 (x, y) ϵ [xi−1, xi]× [yi−1, yi]

ϕ01(x, y) =
x
h (1−

y
h) (x, y) ϵ [xi−1, xi]× [yi, yi+1]

ϕ10(x, y) = (1− x
h)

y
h (x, y) ϵ [xi, xi+1]× [yi−1, yi]

ϕ11(x, y) = (1− x
h)(1−

y
h) (x, y) ϵ [xi, xi+1]× [yi, yi+1]

0 elsewhere

where i denotes where the peak of this basis function will be. Note that this description of the basis
function is not complete. In the code, we define the basis functions in terms of i, so that we obtain

9

Figure 8: Two dimensional basis function with peak at (x, y) = (0.5, 0.5) and distance between nodes
h = 0.25

a general representation of basis functions for any element. Here however we have the specific basis
function which peaks only at a chosen i. The basis functions are linear on x and y, and still polynomial
on each element of our mesh. Observe in figure 8 what one such basis function looks like.

We now begin to assemble our problem as we did before into a linear matrix equation. The function
u(x, y) can be written as uh(x, y) =

∑n
i=0 uiϕi(x, y), and similarly the test function ϕ can be replaced

with a basis function ϕi(x, y) and summed over all 0 ≤ i ≤ n. The problem is expressed in the form

Au⃗ = F,

where u⃗ is the same as for the one dimensional case, just a sequence of constants which will be our
solution. Matrix A (of size n× n) will have elements of the form∫

Ω

∇ϕi · ∇ϕj dxdy.

Note also that while the gradient of a scalar would give us a vector, we immediately dot product it
with another vector (giving us back a scalar), so no complications arise in terms of having to do vector
integration. The integration part of the problem we done simply using two np.trapz functions.

Matrix F (of size n× 1) has elements of the form

−
∫
Ω

f(x, y)ϕj dxdy − x(x− 1)

∫
∂ΩN

ϕj dy.

Recall that the second integral above is calculated only on the line {1}× [0, 1], hence why we can treat
it as a line integral in the y direction.

10

4.3 Implementation and Results

The implementation procedure is similar to what was done for the 1 dimensional case. It is interest-
ing to note that in most popular libraries which provide easy interface to use FEM, the meshes have
somewhat randomly placed nodes and triangular elements. For the 1 dimensional and 2 dimensional
problems, we decided to use square elements because of the ease of implementation. Triangular ele-
ments and their associated nodes would have a different set of basis functions and the integrals needed
for the weak formulation of the equations would need to be evaluated over triangular domains. On
the other hand square meshes only need 2 arrays to be defined. Each basis function will only need
to be shifted according to the position of the node and the integrals will be very easy to visualise as
they are on square domains. It also means that the implementation for the 2 dimensional case can be
relatively easily adapted from the 1 dimensional case.

Another key difference in implementation with respect to the one dimensional case is the way in
which the matrix elements are defined. When iterating over the domain Ω, we begin by looking at the
basis function in the top left corner of the domain, and continue downwards along the leftmost ”strip”
of the domain. We then continue listing the basis functions on the second ”strip” starting from the
top, and so forth until we reach the rightmost strip of the domain, where the Neumann boundary
∂ΩN lies. However note that every time we reach the end of a strip, our basis functions must vanish
due to the Dirichlet boundary conditions, and the same goes for the start of the next strip. In this
example, we chose n = 7 to discretise our domain, meaning we obtain a 7 × 7 grid. On the first
vertical strip five nodes out of seven are non zero, which results in the segmented diagonal line we
see in the matrix in figure 9. Note also how the bottom right corner of the matrix has a lower value
than the rest of the diagonal - this is due to the fact that the last basis function along the boundary
will not be a full ”pyramidal” shape, but rather half of one. As expected, the matrix we obtain for A
is still symmetric, with a segmented main diagonal and similar upper and lower diagonal as what we
obtained for the one dimensional case.

Figure 9: Matrix A for 49 nodal points (with Dirichlet and Neumann BCs)

11

Figure 10 shows the two dimensional plot of the solution u to this problem with the forcing func-
tion

f(x, y) = −2y.

Figure 10: Solution to ∇2u = −2y with mixed boundary conditions

To verify that our numerical solution is correct, we would have to know the analytic solution to our
PDE. Fortunately, the choice of this problem was derived from a chosen solution i.e. for the function

u(x, y) = −yx(x− 1)

we find a suitable f(x, y) so that the equation ∇2u(x, y) = f(x, y) holds. Since

∇2(−yx(x− 1)) = −2y,

we obtain our required forcing function f(x, y) = −2y. The solution u also contains the information
for the boundary conditions required for the problem. Plotting the predetermined analytic solution,
we are able to see that the solutions we obtained numerically match their precise mathematical form.

4.4 Another Two Dimensional Poisson Problem

Now that we have the necessary computational tools, we also decided to solve the two dimensional
Poisson problem for the forcing function

f(x, y) = −2π2 sin (πx) sin (πy)

with only the Dirichlet boundary condition

u(x, y) = 0 on ∂Ω.

The results we obtain for the matrix A and the solution u(x, y) are seen in figures 11 and 12.
Using the same principle, we know that the analytic solution of this problem is

u(x, y) = −sin(πx)sin(πy).

12

Figure 11: Matrix A for 49 nodal points Figure 12: Solution for 49 nodal points

4.5 A note on Error Analysis

As with any computational method, it is crucial that we study the errors that arise with this method.
[12] One of the main errors we encounter is the discretisation error. As we can see in the 1 dimensional
Poisson problem figure 5, the mesh size we chose plays an important role in the accuracy of our
solutions. Throughout the project we often times first calculate solutions on a courser mesh grid, and
when we obtain something that we are happy with, we refine the mesh to a finer grid.

There is also an error associated with the estimation of functions on each cell of our mesh, also
known as the interpolation error. In the beginning we use linear polynomials as our basis functions
to discretise our functions, but later we expand our investigation to higher order polynomials. We
found that for a sufficiently large number of nodes, the linear basis functions produced quite accurate
results for what we were solving, however if we were to try more advanced problems on more advanced
domains, we might have to turn to higher order polynomials and denser meshes for better accuracy.

Then there is the usual error associated with the other numerical methods used in this project
such as trapezoidal integration, finite difference method of obtaining derivatives etc. We found that
it is important to increase the accuracy of the numerical integration as you increase the number of
nodes.

To measure the error of our numerically derived solutions, we use the L2 norm which was mentioned
earlier. This involves measuring the difference of the square integral of our known analytic solution
and the numerical solution which we derive. For example in the second two dimensional Poisson
problem (Section 4.4) we found that for a larger number of nodes, the L2 error was smaller. We
choose our integral step size to be 1000 per element, and obtain the following results. On a 5×5 grid,
the error of our solution was of magnitude ≈ 0.030655. However if we increase the size of the grid to
7× 7, the error decreased to ≈ 0.014620.

5 Heat Equation

The heat equation is a fundamental partial differential equation in both pure and applied mathematics.
It describes the diffusion of a property such as heat in a given domain over some time t. Here we aim

13

to solve the following form of the heat equation:

∂u

∂t
= ∇2u+ f

where u = u(x, y, t) is a function of two spacial variables and one time variable, and f(x, y) is some
forcing function. [13] For this problem we let the spacial domain Ω be the unit square [0, 1] × [0, 1]
and impose the usual Dirichlet boundary conditions

u(x, y, t) = 0 on ∂Ω.

We additionally impose initial conditions

u(x, y, 0) = sin (πx) sin (πy).

5.1 Discretisation of Time

To solve the time dependent PDE, we must first discretise the time derivative, and then obtain a
stationary problem at each timestep. If we let s be a particular time step then the time derivative
can be discretised using finite (backward) difference as(

∂u

∂t

)s+1

≈ us+1 − us

∆t

where superscript s denotes the value of the function at the timestep s and ∆t is a small but nonzero
difference in time. We now obtain an expression for the problem at a timestep s

us+1 − us

∆t
= ∇2us+1 + f.

Since f is independent of time, we exclude the superscript timestep for f . But we know what u0 is,
as this is the initial condition which we specified earlier, so we can define a sequence of equations for
us+1 (given that we have us) as follows

u0 = sin (πx) sin (πy)

us+1 −∇2us+1∆t = us + f∆t for s = 0, 1, 2, . . .

5.2 The Weak Formulation and Spacial Discretisation

The procedure for obtaining the weak formulation for each time step is the same as usual. We define
an appropriate function space for this problem. We then multiply by a test function ϕ on both sides of
the equation and integrate over the entire domain. Then we rewrite the integrals with the Laplacian
term using integration by parts in order to reduce the order of the differential equation. Lastly we
apply the Dirichlet boundary conditions and we obtain the following:∫

Ω

us+1ϕdxdy +

∫
Ω

∆t∇us+1 · ∇ϕdxdy =

∫
Ω

usϕdxdy +

∫
Ω

∆tfϕ dxdy.

We discretise this formulation using the same basis functions as in the two dimensional Poisson
problem. Then for each given us, starting with u0, we solve the weak form by writing it as a linear
matrix equation to obtain a solution for us+1.

14

(a) Timestep 0 (b) Timestep 4

(c) Timestep 8 (d) Timestep 50

Figure 13: Snapshots of the solution to ∂u
∂t = ∇2u with Dirichlet boundary conditions and initial

conditions u(x, y, 0) = sin (πx) sin (πy)

5.3 Implementation and Results

The method for solving this problem is similar to what was done in the two dimensional Poisson
problem. The main difference in the implementation is that we iterate with a time step ∆t. This
means that we create an additional for loop, and obtain a sequence of solutions rather than just one
solution. Choosing f(x, y) = 0 we obtain a specific sequence of solutions to the problem. To show the
solution as it evolves over time, we created a short animation, which you can see here. Additionally,
in figure 13, observe selected snapshots of the evolution of u(x, y, t) over 50 timesteps with ∆t = 0.01.
This figure showcases the typical behaviour of heat dissipation, where the heat flows from areas of
high concentration into the surrounding areas of low concentration. Also, as we physically expect, the
heat dissipates quickly at the beginning (when the temperature difference is large), and the dissipation
slows down in the later timesteps.

15

https://github.com/drozd324/Fluid-Sim/blob/main/code%20-%20final/plotting/heat%20equation/trials/animation.gif

6 Stokes Equations

Lastly, we return to the equations describing fluid flow. [14] The Stokes equations is a simpler case of
the notorious Navier-Stokes equations, where the fluid is assumed to be viscous but with low velocity.
These equations are often associated with Stokes flow, also known as creeping flow, and can be used
to model the behaviour of a slow fluid such as the flow of bodily fluids, paint, water flow in soil
etc.[15][16]

Solving these partial differential equations will be different to what we’ve done so far, as we are
dealing with a system of vector equations. Observe below the following formulation of the Stokes
problem:

µ∇2u⃗−∇p = f⃗

∇ · u⃗ = 0

where

• µ is dynamic viscosity

• u⃗ is the velocity of the fluid

• p is fluid pressure

• f⃗ describes external forces (e.g. gravity).

Given a forcing function f⃗ (and a constant µ) we aim to find a suitable u⃗ and p which satisfy the
equations above. We let our domain Ω the unit square [0, 1]× [0, 1], and impose the following Dirichlet
boundary conditions on u⃗ and p:

u⃗ = 0⃗ on ∂Ω

p(x, y) = 0 on ∂Ω.

Let u⃗ = (u1, u2) where u1 is the horizontal velocity of the fluid and u2 is the vertical velocity. Similarly,

let f⃗ = (f1, f2) We can then separate the first Stokes equation component-wise to obtain the following
system of equations:

µ∇2u1 −
∂p

∂x
= f1

µ∇2u2 −
∂p

∂y
= f2

∇ · u⃗ = 0

These equations can each be put into its weak formulation, and then solved simultaneously in one
matrix equation using a clever arrangement of the system.

6.1 The Weak Formulation

We obtain the weak formulation using the same method as usual. Given three test functions ϕ1, ϕ2, ϕ3
the weak formulations of each equation can be expressed as:

µ

∫
Ω

∇u1 · ∇ϕ1 dxdy −
∫
Ω

p
∂ϕ1
∂x

dxdy =

∫
Ω

f1ϕ1 dxdy

µ

∫
Ω

∇u2 · ∇ϕ2 dxdy −
∫
Ω

p
∂ϕ2
∂y

dxdy =

∫
Ω

f2ϕ2 dxdy∫
Ω

(∇ · u⃗)ϕ3 = 0

16

6.2 Basis Functions

To discretise the weak formulation, we first define a set of basis functions for our mesh. This time we
must introduce quadratic basis functions to satisfy what is known as the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition. The discretisation of Stokes flow involves certain saddle-point problems, which can
lead to instability in the code. In simplified terms, this condition ensures that the discretisation
of Stokes flow guarantees stability and convergence. We thus use mixed basis functions, linear and
quadratic, to discretise our functions.[17] The combination of bases we use is known as the Taylor-
Hood elements. This means we approximate the pressure function p using linear basis elements, and
the velocity components u1, u2 using quadratic basis elements.

Figure 14: Sum of quadratic bases Figure 15: Sum of scaled quadratic bases

To gain and understanding of the two dimensional quadratic basis functions, we begin by look-
ing at the one dimensional case. Here, for each element on our mesh, we use three quadratic
functions to approximate a function on this element. We can see the construction of a function
vh(x) = 1 · ψ0.25(x) + 1 · ψ0.5(x) + 1 · ψ0.75(x) in figure 14. We can also scale the basis functions to
construct a function vh(x) = 1 · ψ0.25(x) + 3 · ψ0.5(x) + 3 · ψ0.75(x), as is seen in figure 15.

On each element we therefore have the two nodes at the endpoints, and an additional node in the cen-
tre, where the peak of the central quadratic basis function is. However defining these basis functions
computationally is not as straightforward as for the linear case.

Let h be the the distance between two consecutive nodes, and let x = i denote the peak of our
basis function. On each odd node of our mesh (node 1, node 3, ...) we define a ”n-shaped” basis
function, a plot of which can be seen in figure 16. We write this as

ψodd
i (x) =

{
1− (x−i)2

h2 x ϵ [i− h, i+ h]

0 elsewhere

On each even node of our mesh, (node 0, node 2, ...) we define an ”pointy” basis function, which can
be seen in figure 17. This can be expressed as a piecewise function

ψeven
i (x) =

1

2h2 (x− (i− 2h))(x− (i− h)) x ϵ [i− 2h, i]
1

2h2 (x− (i+ 2h))(x− (i+ h)) x ϵ [i, i+ 2h]

0 elsewhere

17

Figure 16: Odd Quadratic Basis Function Figure 17: Even Quadratic Basis Function

Here we explicitly define the function in terms of the peak i of each function, as there is a subtle
but important difference between the placement of the two types of functions. Note how the even
basis function fits exactly into each element of the mesh, but the odd basis function ”spills over” to
nearby elements. Also observe that the peak is not the same for both functions. If ieven is the peak
of the even function and iodd is the peak of the odd function, then ieven = iodd ± h.

To generalise this notion to two dimensions, we consider a similar process to what we did in the
two dimensional linear basis. We take a one dimensional basis function (say at x = a, and multiply it
by another one dimensional basis function (say at y = b), to obtain the two dimensional basis function
(at (x, y) = (a, b)). But now we have two types of one dimensional basis functions to chose from, so
we actually obtain 4 different types of combinations:

• Even × even

• Odd × odd

• Odd × even

• Even × odd.

While it is possible to manually calculate all the possible combinations, it is quite laborious and
unnecessary for our purposes. We can instead plot each of the types of basis functions, to give us
a better intuition of their structure. Observe the results we obtain for the different types of basis
functions in figure 18.

6.3 Discretisation of the Weak Formulation

As stated earlier, we discretise the velocity componenets using quadratic basis functions and the
pressure using linear basis functions. Let

(u1(x, y))h =

n∑
i=0

u1iψi(x, y)

(u2(x, y))h =

n∑
i=0

u2iψi(x, y)

18

(a) Even × even, (0.6, 0.6) (b) Odd × odd, (0.5, 0.5)

(c) Odd × even, (0.5, 0.6) (d) Even × odd, (0.6, 0.5)

Figure 18: Two dimensional quadratic basis function

(p(x, y))h =

n∑
i=0

piϕi(x, y).

Then we can rewrite the weak formulation in its discretised terms:

n∑
i=0

u1i

(
µ

∫
Ω

∇ψi · ∇ψj dxdy

)
−

n∑
i=0

pi

∫
Ω

ϕi
∂ψj

∂x
dxdy =

∫
Ω

f1ψj dxdy (1)

n∑
i=0

u2i

(
µ

∫
Ω

∇ψi · ∇ψj dxdy

)
−

n∑
i=0

pi

∫
Ω

ϕi
∂ψj

∂y
dxdy =

∫
Ω

f2ψj dxdy (2)

n∑
i=0

u1i

∫
Ω

∂ψj

∂x
ϕj dxdy +

n∑
i=0

u2i

∫
Ω

∂ψj

∂y
ϕj dxdy = 0 (3)

19

Note the choice of test basis functions by which we multiply the equation. The mixed basis functions
are only required in the PDEs which contain both pressure elements and velocity elements, so the
first two equations are being multiplied by a quadratic basis function, and the last one is multiplied
by a linear basis function.

6.4 Matrix Formulation

We now wish to write the above three equations as a matrix, to solve for a sequence of constants (u1i),
(u2i) and (pi), and clever trick to compile these into one matrix equation was promised.

In the formulation Av⃗ = F , we begin by finding the matrix A, as usual. This matrix will be
divided into nine (3×3) main parts. We first label some of the integral terms in the above equations
for clarity.

aij := µ

∫
Ω

∇ψi · ∇ψj dxdy

bij := −
∫
Ω

ϕi
∂ψj

∂x
dxdy

cij := −
∫
Ω

ϕi
∂ψj

∂y
dxdy

d1j :=

∫
Ω

f1ψj dxdy d2j :=

∫
Ω

f2ψj dxdy

If we look at the left side of the first equation (1), we can see that there is an aij term associated with
the u1i components and a bij term associated with the pi components. This will create the first three
(horizontal) blocks of the matrix :

a00 . . . a0n 0 . . . 0 b00 . . . b0n
a10 . . . a1n 0 . . . 0 b10 . . . b1n
...

. . .
...

...
. . .

...
...

. . .
...

an0 . . . ann 0 . . . 0 bn0 . . . bnn

The zeroes in the centre block account for the fact that there are no u2i components in the first equation.

We can now formulate the rest of the matrix using this principle:

A =

a00 . . . a0n 0 . . . 0 b00 . . . b0n
...

. . .
...

...
. . .

...
...

. . .
...

an0 . . . ann 0 . . . 0 bn0 . . . bnn
0 . . . 0 a00 . . . a0n c00 . . . c0n
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 an0 . . . ann cn0 . . . cnn
b00 . . . bn0 c00 . . . cn0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

b0n . . . bnn c0n . . . cnn 0 . . . 0

20

To put this into the matrix equation, we also define the vectors v⃗ and F :

v⃗ =

u11

u12
...

u1n

u21

u22
...

u2n

p1

p2
...

pn

F =

d10

d11
...

d1n

d20

d21
...

d2n

0

0
...

0

We can now numerically solve for v⃗ which gives us the velocity vector field u⃗ = (u1, u2) and the
pressure function p.

6.5 Implementation and Results

We approach this problem by actually choosing u⃗ and p at the beginning. This allows us to numerically
compute an appropriate f⃗ for this problem and gives us a correct solution to compare our numerical
results to. To obtain f⃗ , the specific functions we chose are

u1 = 2π(1− cos (2πx)) sin (2πy)

u2 = −2π(1− cos (2πy)) sin (2πx)

p = sin (2πx) sin (2πy).

In choosing these, we had to ensure that these equations also satisfy the divergence condition, which
they do.

Another major part of implementing the code was constructing the matrix A. Notice how there
are really only three non-zero different matrix blocks within this matrix (with some repeated, and
some transposed). These blocks were calculated separately and then composed to obtain A. Figure
19 shows the matrix we obtain numerically. Note how in the non-zero blocks we can see a similar
diagonal structure to what we have seen before. Observe also the plot of the pressure function p(x, y)
can be seen in Figure 20.

Now for the most interesting result, we obtain plots for the vector field u⃗. Figure 21 shows a vector
field plot, with vectors scaled for visual clarity. In figure 22 we use a plotting software to obtain a
”stream” plot of the vector field. This plot shows the direction of the flow of the fluid described by
the vector field. We also plotted the individual results for the components of the vector which can
be seen in figures 23 and 24. The figure on the left plots the horizontal velocity u1, and the figure on
the right plots the vertical velocity u2. Once again, because we have chosen the solutions which we
aim to obtain in advance, we can easily compare our numerical solutions to our expectations.

21

Figure 19: Matrix A for 81 nodes

Figure 20: Numerically derived pressure function p

22

Figure 21: Vector plot of u⃗ Figure 22: Stream plot of u⃗

Figure 23: Horizontal velocity u1 Figure 24: Vertical velocity u2

6.6 Error Analysis

We once again use the L2 norm to measure the error of our results for the Stokes problem. With an
integral stepsize of 600 per element, we calculate the following errors.
On a 7× 7 grid, we obtain an error of:

• ≈ 0.864872 for u1

• ≈ 0.886772 for u2

• ≈ 0.087308 for p

On a 9× 9 grid, the errors we obtain for our solutions were:

• ≈ 0.717391 for u1

• ≈ 0.717148 for u2

• ≈ 0.060192 for p

Once again, it is clear to see that a more refined mesh leads to more accurate solutions.

23

7 Conclusion

In this project, we investigated the use of the Finite Element Method in solving a range of differential
equations. The objective was to solve numerous problems with varying degrees of difficulty, to gain
a deep insight into the structure of the Finite Element Method. The inspiration behind the chosen
problems were the individual terms in the renowned Navier-Stokes equations. Initially we had planned
to solve preliminary problems which would aid us in solving the Navier-Stokes equations in their
entirety, but we soon came to realise that if we want to thoroughly understand the applications of the
Finite Element Method to differential equations then we must exhaustively investigate each of these
preliminary problems.

We began with a very simple ordinary differential equation, namely the one dimensional Poisson
equation, to study the elemental concepts of the Finite Element Method. We then extended our
understanding to the two dimensional Poisson problem, giving us the tools and experience we needed
to solve the remaining multidimensional problems. We also realised that periodic boundary conditions
are very important in the context of lots of differential equations so we started working on those but
did not get to finalise the code. In principle, we learned that periodic boundary conditions involve
making our basis functions periodic.

Another important class of differential equations in physics are time dependant equations, and
thus we chose the classic problem of the heat equation. Both time dependent terms and Laplacian
terms (as in the Poisson equations) appear in the Navier-Stokes equations, and we hoped that solving
the aforementioned problems would be a stepping stone towards our initial goal. The time dependent
term in the Navier-Stokes also contained a non-linear term, so we tried to solve a non-linear Poisson
problem, but couldn’t quite get a satisfactory implementation. Also, we realised that the solving of the
Navier-Stokes equation by its very nature required more advanced techniques which apply specifically
to the these equations. Nonetheless, there was a lot of interesting theory behind the investigation of
this problem involving Gateaux derivatives, associated Taylor Series expansions and a clever Newton
iteration method to converge to solutions.

A better approach was to solve a subcase of the Navier-Stokes problem, specifically the Stokes
equations for slow fluid flow. This problem not only gave us a better understanding of how to solve
vector equations using Finite Element Method, but also we obtained steady-state results for fluid flow
as we had originally intended. We also learned more about convergence conditions, which led us to
defining quadratic basis functions to solve the problem.

The Finite Element Method is quite mathematically involved, which was a point of major inter-
est to us. We found that there is a general structure to using this method i.e. writing the problem
in its weak formulation, discretising the domain and the equations using appropriate basis functions,
and formulating the discretised weak form as a system of linear equations. However in each problem,
we found that the beauty lies in the neat tricks which we use to simplify the process. For example,
in the Stokes problem we had to come up with a creative way of writing three coupled equations
into one matrix equation. We actually found that the resources online were quite limited in terms of
explanation for this problem, so it took some effort to come up with the matrix formulation. This is
partially the reason why we described the steps to create the matrix A in elaborate detail. Hopefully
the next person to solve the Stokes equations using Finite Element Method can gain some insight
from our formulations.

Overall, a lot was learned about Finite Element Analysis and its applications to differential equa-
tions. This project was a pleasure to investigate both from a theoretical and practical perspective.
We hope to continue our exploration of the method in the future, and maybe one day we will have
enough mastery and expertise to aim for that one million dollar prize.

24

8 Further Reading

In this report we included the most refined results which we obtained, however over the past few
months, we went down many rabbit holes which were not included in this report. Some extra material
which may be of interest is included in this section.

• A link to Patryk Drozd’s Github page on everything associated with our investigation in this
project, including a lot of material which is not explicitly written into this report.

https://github.com/drozd324/Fluid-Sim

• From the Github, we wish to explicitly include the file solving a one dimensional Poisson prob-
lem with Neumann Boundary conditions.

https://github.com/drozd324/Fluid-Sim/blob/main/code

• We also include a file containing a solution to the heat equation in which we construct our
forcing function by choosing our solution in advance and working backwards. This was done to
ensure that the code we have for solving the heat equation works.

https://github.com/drozd324/Fluid-Sim/blob/main/code

• A short article about the mathematics of computing the Navier-Stokes equations with the Finite
Element Method. This is one of the projects which we would love to explore in the future.

https://jsdokken.com/dolfinx-tutorial/chapter2/navierstokes.html

• Notes on the implementation of periodic boundary conditions with the Finite Element Method.

https://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts/pbctut.pdf

• As mentioned earlier, there was an attempt in solving a non- linear Poisson problem. If the
reader chooses to check our implementation in the aforementioned Git Hub page, this resource
contains notes on the mathematics behind solving a particular non linear Poisson problem.

https://finite-element.github.io/8nonlinearproblems.html

9 Acknowledgements

We wish to give our thanks to the Theoretical Physics department for their support and guidance
in this project, but also in our understanding of physics as a whole. We greatly appreciate the
mathematical understanding Dr. Paul Watts provided us with which was needed in many aspects
of our derivations. We are also grateful to Dr. John Brennan for providing clarity and insight into
the computational aspects of this project which we struggled with. Most importantly, we thank Dr.
Jonivar Skullerud for the opportunity to do this project. In particular, we acknowledge his support
in allowing us to choose our own idea for the project, which proved to be an invaluable learning
experience for us.

10 References

Note that many of these references have resources which are used throughout the entire project. In
the report, each resource was referenced when it was firstly used.

25

https://finite-element.github.io/8_nonlinear_problems.html

[1] https://doi.org/10.1590/1806-9126-RBEF-2017-0239

[2] https://www.claymath.org/millennium/navier-stokes-equation/

[3] https://doi.org/10.1016/B978-1-4557-3141-1.50031-9

[4] https://doi.org/10.1016/B978-0-12-824117-2.00011-9

[5] https://doi.org/10.1016/B978-0-12-815601-8.50006-9

[6] https://ntrs.nasa.gov/citations/19840010609

[7] https://www.youtube.com/watch?v=P4lBRuY7pC4

[8] https://jsdokken.com/dolfinx-tutorial/chapter1/fundamentals.html

[9] Johnson, C. (n.d.). Numerical solution of partial differential equations by the finite element
method. Courier Corporation.

[10] https://mathworld.wolfram.com/L2-Space.html

[11] https://fenicsproject.org/pub/tutorial/sphinx1/.ftut1003.html

[12] https://doi.org/10.1016/B978-0-7506-6722-7.X5030-9

[13] https://jsdokken.com/dolfinx-tutorial/chapter2/heatequation.html

[14] https://finite-element.github.io/

[15] https://doi.org/10.1007/978-3-030-23370-92

[16] https://doi.org/10.1016/B978-0-12-815489-2.00005-8

[17] https://people.sc.fsu.edu/ jburkardt/classes/fem2011/femstokes.pdf

11 Code

1 """

2 This script solves the 1 dimensional poisson problem with dirichlet boundary

conditions.

3

4 with solution

5

6 ------ in LateX code ------

7

8 $u(x) = \frac {1}{2} x(x-1)

9

10 and forcing function

11

12 $f(x) = 1

13

14 """

15

16 import numpy as np

17 import matplotlib.pyplot as plt

18

19 import os

20 import sys

21 current_dir = os.getcwd ()

22 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

23 sys.path.append(top_dir)

26

https://fenicsproject.org/pub/tutorial/sphinx1/._ftut1003.html
https://jsdokken.com/dolfinx-tutorial/chapter2/heat_equation.html
https://doi.org/10.1007/978-3-030-23370-9_2
https://people.sc.fsu.edu/~jburkardt/classes/fem_2011/fem_stokes.pdf

24

25 from tools import basis_functions as bf

26 from tools import norms as nrm

27

28 N = 200

29 steps = 10000 # number of steps in calculation of integrals

30

31 def solve_poisson(H):

32 """Container function for main part of code. The purpose of this is to create an

easy way to

33 run solver with various parameters.

34

35 Args:

36 H (int): number of nodes

37

38 Returns:

39 tuple: solution to equation , solution matrix A, solution matrix F, error

40 """

41

42 vertices = list(np.linspace(0, 1, H))

43 elements = [[vertices[i], vertices[i+1]] for i in range(H-1)]

44 h = vertices [1] - vertices [0]

45

46 # defining basis functions and their derivatives. This was done initially to swap

out linear basis functions to quadratic basis function just because we can

47 def basis_func(vert , x):

48 return bf.phi(vert , x, h)

49

50 def d_basis_func(vert , x):

51 return bf.grad_phi(vert , x, h)

52

53

54 def force(x):

55 return -1

56

57 # defining matrix to calculate entries for

58 A = np.zeros((H, H))

59 F = np.zeros((H))

60

61 # functions for calculating entries of matrices

62 def a(vert0 , vert1 , x):

63 return d_basis_func(vert0 , x) * d_basis_func(vert1 , x)

64

65 def f(vert0 , x):

66 return basis_func(vert0 , x) * force(x)

67

68 # main bit of code iterating over elements of mesh (here a 1dim line) and

calcualting entries of the matrices

69 for ele in elements:

70 x = np.linspace(ele[0], ele[1], steps)

71

72 for vert0 in ele:

73 j = vertices.index(vert0)

74 F[j] = F[j] + np.trapz(f(vert0 , x), x)

75

76 for vert1 in ele:

77 i = vertices.index(vert1)

78 A[i, j] = A[i, j] + np.trapz(a(vert0 , vert1 , x), x)

79

80 # final calculation of solution

81 A_inverted = np.linalg.pinv(A)

82 solution = np.matmul(A_inverted , F)

83

84 vertices = np.array(vertices)

85 error = nrm.l_squ_norm ((((vertices **2) /2) - (vertices /2)) - solution , vertices)

27

86

87 x = np.linspace(0, 1, N)

88 u = bf.conv_sol(solution , x, bf.hat , vertices , h)

89

90

91 return u, A, F, error

92

93 poisson_sols = []

94 vert_num = [3, 5, 20] # number of vertices to solve the equation over

95 for num in vert_num:

96 sol = solve_poisson(num)

97 poisson_sols.append(sol)

98

99 x = np.linspace(0, 1, N)

100 for i, u in enumerate(poisson_sols):

101 plt.plot(x, u[0], label=f"{ vert_num[i]} vertices ")

102 plt.xlabel("x")

103 plt.ylabel("u(x)")

104 plt.plot(x, ((x**2) /2) - (x/2), label="Analytical Solution")

105 plt.legend ()

106 plt.title(r’Solution for $-u^{\ prime\prime}(x) = 1$’)
107 #plt.savefig(f"(Poisson_1d)_(lin_sol)_(x)", dpi =500)

108 plt.show()

109

110 for i in range(len(vert_num)):

111 plt.matshow(poisson_sols[i][1])

112 plt.title(r’Solution Matrix for $-u^{\ prime\prime}(x) = 1$’ + f" ,vert num = {

vert_num[i]}")

113 plt.colorbar ()

114 plt.show()

115 #plt.savefig(f"(Poisson_1d)_(lin_matrix_A)_(vertex_num_{H})")

116

117 """ a method of measuring how accurate our solutions are would be to use a norm on

functions.

118 There is an L^2 norm which is used to comapare functions. We would simply take the

difference

119 of our solution and its analytical solution and throw it into this norm.

120 """

121 print(f"L squared norm error for 20 vertices = {poisson_sols [2][3]}")

Listing 1: poisson 1dim ele dirichlet.py

1 """

2 Script solving the 2d poisson problem with dirichlet boudary conditions.

3

4 With manufactured forcing function

5

6 --------- in LateX code -----------

7

8 $f(x, y) = -2 \pi^2 sin(\pi x)sin(\pi y)$
9

10 and solution

11

12 $u(x, y) = -sin(\pi x)sin(\pi y)

13

14 """

15

16 import numpy as np

17 import matplotlib.pyplot as plt

18 import time

19

20 import os

21 import sys

22 current_dir = os.getcwd ()

23 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

28

24 sys.path.append(top_dir)

25

26 from tools import basis_functions as bf

27 from tools import vector_products as vp

28 from tools import norms as nrm

29

30 # main parameters to change

31 steps = 1000 # accuracy or steps in integrals , make this smaller for significantly

quicker run time

32 H = 5 # H^2 is the number of nodes in the mesh , tweak this parameter to got a denser

mesh

33 # important to increase steps along side H

34

35 # defining mesh

36 x = np.linspace(0, 1, H)

37 y = np.linspace(0, 1, H)

38 h = x[1] - x[0]

39 vertices = (np.array(np.meshgrid(x, y)).reshape(2, -1).T).tolist ()

40 elements = [[[x[i] , y[j]],

41 [x[i+1], y[j]],

42 [x[i] , y[j+1]],

43 [x[i+1], y[j+1]]] for i in range(H-1) for j in range(H-1)]

44

45

46 # defining functions for integrands

47 def force(x):

48 return -2*(np.pi**2)*np.sin(np.pi*x[0])*np.sin(np.pi*x[1])

49

50 def f(vert , x):

51 return bf.phi_2d(vert , x, h) * force(x)

52

53 def a(vert0 , vert1 , x):

54 return vp.grad_dot_grad_phi2d(vert0 , vert1 , x, h)

55

56 A = np.zeros((H**2, H**2))

57 F = np.zeros((H**2))

58

59 t0 = time.time()

60 for k, ele in enumerate(elements):

61 x0 = np.linspace(ele [0][0] , ele [3][0] , steps)

62 y0 = np.linspace(ele [0][1] , ele [3][1] , steps)

63 X0, Y0 = np.meshgrid(x0, y0)

64

65 percentage = round (100 * ((k)/(len(elements) -1)), 1)

66 print(f"{ percentage}%", end="\r")

67

68 for vert0 in ele:

69 j = vertices.index(vert0)

70 F[j] = F[j] + np.trapz(np.trapz(f(vert0 , (X0, Y0)) , y0 , axis =0), x0, axis =0)

71

72 for vert1 in ele:

73 i = vertices.index(vert1)

74 A[j, i] = A[j, i] + np.trapz(np.trapz(a(vert0 , vert1 , (X0, Y0)) , y0,

axis =0), x0 , axis =0)

75

76 t1 = time.time()

77 print(f"time taken: {(t1-t0)/60} minutes ")

78

79 # this is solving the matrix equation Au = F

80 solution = np.matmul(np.linalg.pinv(A), F)

81

82 # the rest is plotting

83 N = 3*H

84 x0 = np.linspace(0, 1, N)

85 y0 = np.linspace(0, 1, N)

29

86 X0, Y0 = np.meshgrid(x0, y0)

87

88 fig = plt.figure ()

89 ax = plt.axes(projection =’3d’)

90 ax.plot_surface(X0, Y0, bf.conv_sol(solution , (X0 , Y0), bf.phi_2d , vertices , h), cmap=

"viridis")

91 ax.set_xlabel(’x’)

92 ax.set_ylabel(’y’)

93 ax.set_zlabel(’u(x,y)’)

94 ax.set_title(r"$ \nabla^2 u(x,y) = -2 \pi^2sin(\pi x)sin(\pi y) $")
95 #plt.savefig(f"(Poisson_2d)_(vertex_num_{H**2})", dpi =500)

96

97 plt.matshow(A)

98 plt.colorbar ()

99 #plt.savefig(f"(Poisson_2d)_(mat_A)_(vertex_num_{H**2})", dpi =500)

100 plt.show()

101

102 #error check

103 math_sol = lambda x: -np.sin(np.pi*x[0])*np.sin(np.pi*x[1])

104 ele_sol = bf.conv_sol(solution , (X0 , Y0), bf.phi_2d , vertices , h)

105 print(f"L squared norm error with {H**2} nodes = {nrm.l_squ_norm_2d(ele_sol - math_sol

((X0, Y0)), (x0, y0))}")

Listing 2: poisson 2dim ele dirichlet.py

1 """

2 Script solving the 2d poisson problem with neumann boundary conditions.

3

4 With manufactured forcing function

5

6 --------- in LateX code -----------

7

8 $f(x, y) = -2y

9

10 neumann boundary conditions

11

12 $\del u \cdotp \hat{n} = -x(x-1)$
13

14 and solution

15

16 $u(x, y) = -yx(x - 1)

17

18 """

19

20 import numpy as np

21 import matplotlib.pyplot as plt

22 import time

23

24 import os

25 import sys

26 current_dir = os.getcwd ()

27 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

28 sys.path.append(top_dir)

29

30 from tools import basis_functions as bf

31 from tools import vector_products as vp

32 from tools import norms as nrm

33

34 # main parameters to change

35 steps = 200 # accuracy or steps in integrals , make this smaller for significantly

quicker run time

36 H = 7 # H^2 is the number of nodes in the mesh , tweak this parameter to got a denser

mesh

37

38 # defining mesh

30

39 x = np.linspace(0, 1, H)

40 y = np.linspace(0, 1, H)

41 h = x[1] - x[0]

42 vertices = (np.array(np.meshgrid(x, y)).reshape(2, -1).T).tolist ()

43 elements = [[[x[i] , y[j]],

44 [x[i+1], y[j]],

45 [x[i] , y[j+1]],

46 [x[i+1], y[j+1]]] for i in range(H-1) for j in range(H-1)]

47

48 # defining functions for integrands

49 def force(x):

50 x, y = x

51 return -2*y

52

53 def n(x):

54 x, y = x

55 return -x*(x-1)

56

57 def f(vert , x):

58 return bf.phi_and_hat_2d(vert , x, h, [0]) * force(x)

59

60 def a(vert0 , vert1 , x):

61 return vp.gdg_phi_and_hat_2d(vert0 , vert1 , x, h, [0])

62

63 def neumann(vert , x):

64 x, y = x

65 int1 = np.trapz(n((x, 0)) * bf.phi_and_hat_2d(vert , (x, 0), h, []) , x, axis =0)

66 int2 = np.trapz(n((x, 1)) * bf.phi_and_hat_2d(vert , (x, 1), h, []) , x, axis =0)

67 return int1 + int2

68

69 A = np.zeros((H**2, H**2))

70 F = np.zeros((H**2))

71

72

73 t0 = time.time()

74 for k, ele in enumerate(elements):

75 x0 = np.linspace(ele [0][0] , ele [3][0] , steps)

76 y0 = np.linspace(ele [0][1] , ele [3][1] , steps)

77 X0, Y0 = np.meshgrid(x0, y0)

78

79 percentage = round (100 * ((k)/(len(elements) -1)), 1)

80 print(f"{ percentage}%", end="\r")

81

82 for vert0 in ele:

83 j = vertices.index(vert0)

84 F[j] = F[j] - np.trapz(np.trapz(f(vert0 , (X0, Y0)) , y0 , axis =0), x0, axis =0)

+ neumann(vert0 , (x0 , y0))

85

86 for vert1 in ele:

87 i = vertices.index(vert1)

88 A[j, i] = A[j, i] + np.trapz(np.trapz(a(vert0 , vert1 , (X0, Y0)) , y0,

axis =0), x0 , axis =0)

89

90

91 t1 = time.time()

92 print(f"time taken: {(t1-t0)/60} minutes ")

93

94 # this is solving the matrix equation Au = F

95 solution = np.matmul(np.linalg.pinv(A), F)

96

97 # the rest is plotting

98 N = 3*H

99 x0 = np.linspace(0, 1, N)

100 y0 = np.linspace(0, 1, N)

101 X0, Y0 = np.meshgrid(x0, y0)

31

102

103 fig = plt.figure ()

104 ax = plt.axes(projection =’3d’)

105 ax.plot_surface(X0, Y0, bf.conv_sol(solution , (X0 , Y0), bf.hat_2d , vertices , h), cmap=

"viridis")

106 ax.set_xlabel(’x’)

107 ax.set_ylabel(’y’)

108 ax.set_zlabel(’u(x,y)’)

109 #ax.set_title(r"$ \nabla^2u(x,y) = -2y $ with neumann bdry $n(x,y) = -x(x-1)$")
110 #plt.savefig(f"(Poisson_2d)_(neumann)_(vertex_num_{H**2})", dpi =500)

111

112 plt.matshow(A)

113 plt.colorbar ()

114 plt.savefig(f"(Poisson_2d)_(mat)_(neumann)_(vertex_num_{H**2})", dpi =500)

115 plt.show()

116

117 #error check

118 math_sol = lambda x: -np.sin(np.pi*x[0])*np.sin(np.pi*x[1])

119 ele_sol = bf.conv_sol(solution , (X0 , Y0), bf.phi_2d , vertices , h)

120 print(f"L squared norm error with {H**2} nodes = {nrm.l_squ_norm_2d(ele_sol - math_sol

((X0, Y0)), (x0, y0))}")

Listing 3: poisson 2dim ele neumann.py

1 """

2 This a file is for solving the heat equation with

3

4 ------ in LateX code --------

5

6 $u(x, y, 0) = sin(\pi x) sin(\pi y)$
7

8 $f(x, y, t) = 0$
9

10 -----------------------------

11

12 """

13

14 import numpy as np

15 import matplotlib.pyplot as plt

16 import matplotlib.animation as animation

17 import time

18

19 import os

20 import sys

21 current_dir = os.getcwd ()

22 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

23 sys.path.append(top_dir)

24

25 from tools import basis_functions as bf

26 from tools import vector_products as vp

27

28 steps = 100 # steps in integrals

29

30 # defining mesh

31 H = 7

32 x = np.linspace(0, 1, H)

33 y = np.linspace(0, 1, H)

34 X, Y = np.meshgrid(x, y)

35 h = x[1] - x[0]

36 vertices = (np.array(np.meshgrid(x, y)).reshape(2, -1).T).tolist ()

37 elements = [[[x[i] , y[j]],

38 [x[i+1], y[j]],

39 [x[i] , y[j+1]],

40 [x[i+1], y[j+1]]] for i in range(H-1) for j in range(H-1)]

41

32

42 # declaring time stepping necessities

43 dt = .01 # change in time

44 time_steps = 50 # amount of iterations we want

45 u_0 = [np.sin(np.pi*x[0]) * np.sin(np.pi*x[1]) for x in vertices] # initial condtions

at time=0

46 u_sols = [u_0] # list for keeping track of evolution of system

47 A_sols = []

48

49 def force(x, t):

50 return 0

51

52 # functions for calculating the entries of matrices

53 def f(vert , x, u, time):

54 return (u + (dt * force(x, time))) * bf.phi_2d(vert , x, h)

55

56 def a(vert0 , vert1 , x):

57 return (bf.phi_2d(vert0 , x, h)*bf.phi_2d(vert1 , x, h)) + (dt*(vp.

grad_dot_grad_phi2d(vert0 , vert1 , x, h)))

58

59 t0 = time.time()

60 for t in range(time_steps): #time stepping loop

61 A = np.zeros((H**2, H**2))

62 F = np.zeros((H**2))

63

64 # main code , iterating over elements and calculating entries of matrix

65 for k, ele in enumerate(elements):

66 # creating domain of element to iterate over

67 x0 = np.linspace(ele [0][0] , ele [3][0] , steps)

68 y0 = np.linspace(ele [0][1] , ele [3][1] , steps)

69 X0, Y0 = np.meshgrid(x0 , y0)

70

71 u = bf.conv_sol(u_sols[t], (X0, Y0), bf.phi_2d , vertices , h)

72

73 percentage = round (100 * ((k)/(len(elements) -1)), 1)

74 print(f"time {t} and {percentage}%", end="\r")

75

76 for vert0 in ele:

77 j = vertices.index(vert0)

78 F[j] = F[j] + np.trapz(np.trapz(f(vert0 , (X0, Y0), u, t*dt) , y0, axis =0)

, x0, axis =0)

79

80 for vert1 in ele:

81 i = vertices.index(vert1)

82 A[j, i] = A[j, i] + np.trapz(np.trapz(a(vert0 , vert1 , (X0, Y0)) , y0,

axis =0), x0 , axis =0)

83

84

85 solution_t = np.matmul(np.linalg.pinv(A), F)

86 u_sols.append(solution_t)

87 A_sols.append(A)

88

89

90 t1 = time.time()

91 print(f"time taken: {(t1-t0)/60} minutes ")

92

93 # creating mesh with higher resolution for plotting

94 N = 4*H

95 x = np.linspace(0, 1, N)

96 y = np.linspace(0, 1, N)

97 X, Y = np.meshgrid(x, y)

98

99 func_u_sols = []

100 for i in range(len(u_sols)):

101 func_u_sols.append(bf.conv_sol(u_sols[i], (X, Y), bf.phi_2d , vertices , h))

102

33

103 """--------------- PLOTTING --------------------"""

104

105 # plot and animation

106 len_u_sols = len(func_u_sols)

107 frn = len_u_sols

108 fps = frn //3

109

110 def change_plot(frame_number , func_u_sols , plot):

111 plot [0]. remove ()

112 plot [0] = ax.plot_surface(X, Y, func_u_sols[frame_number], cmap="plasma", vmin=0,

vmax =1)

113

114 fig = plt.figure ()

115 ax = fig.add_subplot(projection=’3d’)

116 plot = [ax.plot_surface(X, Y, func_u_sols [0])]

117 ax.set_zlim(0, 1)

118 ax.set_xlabel("x")

119 ax.set_ylabel("y")

120 ax.set_zlabel("u(x, y, t)")

121 ax.set_title(r"$ \frac{\ partial u}{\ partial t} = \nabla^2 u $ with $u(x,y,0) = sin(\pi

x)sin(\pi y)$")
122

123 ani = animation.FuncAnimation(fig , change_plot , frn , fargs=(func_u_sols , plot),

interval =1000 / fps)

124 ani.save(’animation.gif’,writer=’PillowWriter ’,fps=fps , dpi =400)

125 plt.show()

126

127 # plot of matrix for first iteration

128 plt.matshow(A_sols [0])

129 plt.title("Matrix for first iteration")

130 plt.colorbar ()

131 plt.show()

132

133 # creating a sequence of images for report

134 plt.clf()

135 iter1 = 0

136 fig = plt.figure ()

137 ax = plt.axes(projection =’3d’)

138 ax.axes.set_zlim3d(bottom=0, top=1)

139 ax.plot_surface(X, Y, func_u_sols[iter1], cmap="plasma", vmin=0, vmax =1)

140 ax.set_xlabel(’x’)

141 ax.set_ylabel(’y’)

142 ax.set_zlabel(f’$u(x, y, {iter1*dt})$’)
143 #plt.savefig(f"heat_equ_iter{iter1}", dpi =400)

144

145 plt.clf()

146 iter2 = int(len_u_sols /12)

147 fig = plt.figure ()

148 ax = plt.axes(projection =’3d’)

149 ax.axes.set_zlim3d(bottom=0, top=1)

150 ax.plot_surface(X, Y, func_u_sols[iter2], cmap="plasma", vmin=0, vmax =1)

151 ax.set_xlabel(’x’)

152 ax.set_ylabel(’y’)

153 ax.set_zlabel(f’$u(x, y, {iter2*dt})$’)
154 #plt.savefig(f"heat_equ_iter{iter2}", dpi =400)

155

156 plt.clf()

157 iter3 = int(len_u_sols /6)

158 fig = plt.figure ()

159 ax = plt.axes(projection =’3d’)

160 ax.axes.set_zlim3d(bottom=0, top=1)

161 ax.plot_surface(X, Y, func_u_sols[iter3], cmap="plasma", vmin=0, vmax =1)

162 ax.set_xlabel(’x’)

163 ax.set_ylabel(’y’)

164 ax.set_zlabel(f’$u(x, y, {iter3*dt})$’)

34

165 #plt.savefig(f"heat_equ_iter{iter3}", dpi =400)

166

167 plt.clf()

168 iter4 = time_steps

169 fig = plt.figure ()

170 ax = plt.axes(projection =’3d’)

171 ax.axes.set_zlim3d(bottom=0, top=1)

172 ax.plot_surface(X, Y, func_u_sols[iter4], cmap="plasma", vmin=0, vmax =1)

173 ax.set_xlabel(’x’)

174 ax.set_ylabel(’y’)

175 ax.set_zlabel(f’$u(x, y, {iter4*dt})$’)
176 #plt.savefig(f"heat_equ_iter{iter4}", dpi =400)

Listing 4: heat equation 2+1dim ele.py

1 """

2 Script for solving the stokes equation with a manufactured forcing functions for the

solutions.

3

4 ------ in LateX code ------

5

6 $u_1 = 2\pi(1 - cos (2\pi x)sin(2\pi y)$
7 $u_2 = -2\pi(1 - cos(2\pi y)sin(2\pi x)$
8 $p = sin(2 \pi x)sin(2 \pi y)$
9

10 ---------------------------

11

12 """

13

14 import numpy as np

15 import matplotlib.pyplot as plt

16 import time

17

18 import os

19 import sys

20 current_dir = os.getcwd ()

21 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

22 sys.path.append(top_dir)

23

24 from tools import basis_functions as bf

25 from tools import vector_products as vp

26 from tools import norms as nrm

27

28 # main parameters to tweak

29 H = 3 + (2*3) # we need a specific amount of nodes to make use of quadratic elements ,

here in the form of; 3 + 2*n for n a natural number

30 steps = 600 # steps in integrals over each element

31 # as you increase H make sure to increase steps

32

33 # defining mesh

34 x = np.linspace(0, 1, H)

35 y = np.linspace(0, 1, H)

36 X, Y = np.meshgrid(x, y)

37 h = x[1] - x[0]

38 vertices = (np.array(np.meshgrid(x, y)).reshape(2, -1).T).tolist ()

39

40 # defining quadratic elements

41 quad_elements = []

42 for i in list(np.arange(0, H-1, 2)):

43 for j in list(np.arange(0, H-1, 2)):

44

45 element = []

46 for a in range(0, 3):

47 for b in range(0, 3):

48 element.append ([x[i+a], y[j+b]])

35

49

50 quad_elements.append(element)

51

52 # manufacturing solutions to stokes equation

53 mu = 1 # viscocity

54 u_1 = lambda x: 2*np.pi*(1 - np.cos(2*np.pi*x[0]))*np.sin(2*np.pi*x[1])

55 u_2 = lambda x: -2*np.pi*(1 - np.cos(2*np.pi*x[1]))*np.sin(2*np.pi*x[0])

56 p = lambda x: np.sin(2*np.pi*x[0]) * np.sin (2*np.pi*x[1])

57

58 # first derivatives

59 dx_p = lambda x: np.gradient(p(x), h, edge_order =2)[1]

60 dy_p = lambda x: np.gradient(p(x), h, edge_order =2)[0]

61

62 dx_u1 = lambda x: np.gradient(u_1(x), h, edge_order =2) [1]

63 dy_u1 = lambda x: np.gradient(u_1(x), h, edge_order =2) [0]

64

65 dx_u2 = lambda x: np.gradient(u_2(x), h, edge_order =2) [1]

66 dy_u2 = lambda x: np.gradient(u_2(x), h, edge_order =2) [0]

67

68 # second derivatives

69 ddx_u1 = lambda x: np.gradient(dx_u1(x), h, edge_order =2) [1]

70 ddy_u1 = lambda x: np.gradient(dy_u1(x), h, edge_order =2) [0]

71

72 ddx_u2 = lambda x: np.gradient(dx_u2(x), h, edge_order =2) [1]

73 ddy_u2 = lambda x: np.gradient(dy_u2(x), h, edge_order =2) [0]

74

75 # declaring appropriate forcing functions. Change these to anything you want if you

want to test the code

76 f_1 = lambda x: (mu*(ddx_u1(x) + ddy_u1(x))) - dx_p(x)

77 f_2 = lambda x: (mu*(ddx_u2(x) + ddy_u2(x))) - dy_p(x)

78

79 # declaring appropriate funtions for block matrices

80 gdg = lambda vert0 , vert1 , x, h: - mu * vp.grad_dot_grad(bf.psi_2d(vert0 , x, h)

, bf.psi_2d(vert1 , x, h) , h)

81 hat_dx_psi = lambda vert0 , vert1 , x, h: -bf.phi_2d(vert0 , x, h) * (np.gradient(bf.

psi_2d(vert1 , x, h), h)[1])

82 hat_dy_psi = lambda vert0 , vert1 , x, h: -bf.phi_2d(vert0 , x, h) * (np.gradient(bf.

psi_2d(vert1 , x, h), h)[0])

83

84 t0 = time.time()

85

86 # block matrix calculations

87 mat_blocks = []

88 mat_funcs = [gdg , hat_dx_psi , hat_dy_psi]

89 for ka, a in enumerate(mat_funcs):

90 BLOCK = np.zeros((H**2, H**2))

91

92 for k, ele in enumerate(quad_elements):

93 # creating domain for integration

94 x0 = np.linspace(ele [0][0] , ele[-1][0], steps)

95 y0 = np.linspace(ele [0][1] , ele[-1][1], steps)

96 X0, Y0 = np.meshgrid(x0 , y0)

97

98 # keep track of code running

99 percentage = round (100 * ((k)/(len(quad_elements) -1)), 1)

100 print(f"mat_{ka} {percentage}%", end="\r")

101

102 # main iteration loop

103 for vert0 in ele:

104 j = vertices.index(vert0)

105 for vert1 in ele:

106 i = vertices.index(vert1)

107 BLOCK[j, i] = BLOCK[j, i] + np.trapz(np.trapz(a(vert0 , vert1 , (X0, Y0

), h) , y0, axis =0), x0, axis =0)

108

36

109 mat_blocks.append(BLOCK)

110

111 # block vector calculations

112 vect_blocks = []

113 force_funcs = [f_1 , f_2]

114 for kf, f in enumerate(force_funcs):

115 BLOCK = np.zeros((H**2))

116

117 for k, ele in enumerate(quad_elements):

118 # creating domain for integration

119 x0 = np.linspace(ele [0][0] , ele[-1][0], steps)

120 y0 = np.linspace(ele [0][1] , ele[-1][1], steps)

121 X0, Y0 = np.meshgrid(x0 , y0)

122

123 # keep track of code running

124 percentage = round (100 * ((k)/(len(quad_elements) -1)), 1)

125 print(f"force_{kf} {percentage}%", end="\r")

126

127 # main iteration loop

128 for vert0 in ele:

129 j = vertices.index(vert0)

130 BLOCK[j] = BLOCK[j] + np.trapz(np.trapz((bf.hat_2d(vert0 , (X0 , Y0), h)) *

f((X0, Y0)) , y0, axis =0), x0 , axis =0)

131

132 vect_blocks.append(BLOCK)

133

134 t1 = time.time()

135 print(f"time taken: {round ((t1 -t0)/60, 2)} minutes

")

136

137 # assembly of blocks

138 zero_mat = np.zeros((H**2, H**2))

139 zero_vect = np.zeros((H**2))

140

141 reshaped_mat_blocks = [[mat_blocks [0] , zero_mat , mat_blocks [1]],

142 [zero_mat , mat_blocks [0] , mat_blocks [2]],

143 [mat_blocks [1].T, mat_blocks [2].T, zero_mat]]

144

145 reshaped_vect_blocks = [vect_blocks [0], vect_blocks [1], zero_vect]

146

147 A = np.block(reshaped_mat_blocks)

148 F = np.block(reshaped_vect_blocks)

149

150 # calculation of solution

151 solution = np.matmul(np.linalg.pinv(A), F)

152

153 # creating mesh with higher resolution for plotting

154 N = 4*H

155 x = np.linspace(0, 1, N)

156 y = np.linspace(0, 1, N)

157 X, Y = np.meshgrid(x, y)

158

159 # dissassembling solution vector

160 u1_sol = bf.conv_sol(solution[0 : H**2], (X, Y), bf.psi_2d , vertices , h)

161 u2_sol = bf.conv_sol(solution[H**2 : 2*(H**2)], (X, Y), bf.psi_2d , vertices , h)

162 p_sol = bf.conv_sol(solution [2*(H**2) :], (X, Y), bf.hat_2d , vertices , h)

163

164 # plotting

165 plt.matshow(A)

166 plt.colorbar ()

167 plt.title("Matrix ")

168 plt.savefig("Vector_pde_matrix", dpi =500)

169

170 fig , ax = plt.subplots ()

171 ax.quiver(X, Y, u1_sol , u2_sol)

37

172 ax.set_xlabel("x")

173 ax.set_ylabel("y")

174 ax.set_title(r"$\vec{u}(x, y)$")
175 plt.savefig("vector fiel", dpi =500)

176

177 fig , ax = plt.subplots ()

178 ax.set_xlabel("x")

179 ax.set_ylabel("y")

180 ax.set_title(r"$\vec{u}(x, y)$")
181 ax.streamplot(X, Y, u1_sol , u2_sol)

182 plt.savefig("stream", dpi =500)

183

184 fig = plt.figure ()

185 ax = plt.axes(projection =’3d’)

186 ax.set_xlabel("x")

187 ax.set_ylabel("y")

188 ax.set_zlabel(r"$u_1(x, y)$")
189 ax.set_title("Horizontal Velocity")

190 ax.plot_surface(X, Y, u1_sol , cmap="viridis")

191 plt.savefig("horizontal velocity", dpi =500)

192

193 fig = plt.figure ()

194 ax = plt.axes(projection =’3d’)

195 ax.set_xlabel("x")

196 ax.set_ylabel("y")

197 ax.set_zlabel(r"$u_2(x, y)$")
198 ax.set_title("Vertical Velocity")

199 ax.plot_surface(X, Y, u2_sol , cmap="viridis")

200 plt.savefig("vertical velocity", dpi =500)

201

202 fig = plt.figure ()

203 ax = plt.axes(projection =’3d’)

204 ax.set_xlabel("x")

205 ax.set_ylabel("y")

206 ax.set_zlabel("p(x, y)")

207 ax.set_title("Pressure")

208 ax.plot_surface(X, Y, p_sol , cmap="viridis")

209 plt.savefig("pressure", dpi =500)

210

211 plt.show()

212

213 #error check

214 error_u1_sol = nrm.l_squ_norm_2d(u_1((X, Y)) - u1_sol , (x, y))

215 error_u2_sol = nrm.l_squ_norm_2d(u_2((X, Y)) - u2_sol , (x, y))

216 error_p_sol = nrm.l_squ_norm_2d(p((X, Y)) - p_sol , (x, y))

217

218 error_sum = error_u1_sol + error_u2_sol + error_p_sol

219 print(f"{H**2} nodes per function ")

220 print(f"u1 error = {error_u1_sol }")

221 print(f"u2 error = {error_u2_sol }")

222 print(f"p error = {error_p_sol }")

Listing 5: stokes 2dim ele.py

1 """

2 Plotting of 2dim hat function

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

38

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16 N = 31

17 x = np.linspace(0, 1, N)

18 y = np.linspace(0, 1, N)

19 X, Y = np.meshgrid(x, y)

20

21 fig = plt.figure ()

22 ax = plt.axes(projection =’3d’)

23

24 ax.plot_surface(X, Y, bf.hat_2d ((0.5, 0.5), (X, Y), .25), cmap="viridis")

25 ax.set_xlabel(’x’)

26 ax.set_ylabel(’y’)

27 ax.set_zlabel(r’$\phi_{\frac {1}{2} ,\ frac {1}{2}}(x,y)$’)
28 #plt.savefig (" hat_basis_2d.png", dpi =500)

29 plt.show()

Listing 6: 2d hat plot.py

1 """

2 Plotting of 2dim quadratic basis functions

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16 N = 200

17 x = np.linspace(0, 1, N)

18 y = np.linspace(0, 1, N)

19 X, Y = np.meshgrid(x, y)

20

21 h = 0.1

22

23 pair_1 = (0.5, 0.6)

24 fig = plt.figure ()

25 ax = plt.axes(projection =’3d’)

26 ax.plot_surface(X, Y, bf.quad_2d(pair_1 , (X, Y), h), cmap="viridis")

27 ax.set_xlabel(’x’)

28 ax.set_ylabel(’y’)

29 #plt.savefig(f"quad_basis_2d_{pair_1 }.png", dpi =500)

30 plt.show()

31

32 pair_2 = (0.5, 0.5)

33 fig = plt.figure ()

34 ax = plt.axes(projection =’3d’)

35 ax.plot_surface(X, Y, bf.quad_2d(pair_2 , (X, Y), h), cmap="viridis")

36 ax.set_xlabel(’x’)

37 ax.set_ylabel(’y’)

38 #plt.savefig(f"quad_basis_2d_{pair_2 }.png", dpi =500)

39 plt.show()

40

41 pair_3 = (0.6, 0.5)

42 fig = plt.figure ()

43 ax = plt.axes(projection =’3d’)

44 ax.plot_surface(X, Y, bf.quad_2d(pair_3 , (X, Y), h), cmap="viridis")

39

45 ax.set_xlabel(’x’)

46 ax.set_ylabel(’y’)

47 #plt.savefig(f"quad_basis_2d_{pair_3 }.png", dpi =500)

48 plt.show()

49

50 pair_4 = (0.6, 0.6)

51 fig = plt.figure ()

52 ax = plt.axes(projection =’3d’)

53 ax.plot_surface(X, Y, bf.quad_2d(pair_4 , (X, Y), h), cmap="viridis")

54 ax.set_xlabel(’x’)

55 ax.set_ylabel(’y’)

56 #plt.savefig(f"quad_basis_2d_{pair_4 }.png", dpi =500)

57 plt.show()

Listing 7: 2d quad plot.py

1 """

2 Plotting of sum of hat basis fuctions to show linear interpolation between their peaks

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16

17 N = 1000

18 x = np.linspace(0, 1, N)

19

20 H = 5

21 vertices = np.linspace(0, 1, H)

22 h = vertices [1] - vertices [0]

23

24 func1 = 1 * bf.phi(.25, x, h)

25 func2 = 3 * bf.phi(.5, x, h)

26 func3 = 2 * bf.phi(.75, x, h)

27 func_sum = func1 + func2 + func3

28

29 plt.plot(x, func_sum , label="sum of bases", linestyle="-")

30 plt.plot(x, func1 , label=r"$1\phi_ {0.25}(x)$", linestyle="--")

31 plt.plot(x, func2 , label=r"$3\phi_ {0.5}(x)$" , linestyle="-.")

32 plt.plot(x, func3 , label=r"$2\phi_ {0.75}(x)$", linestyle=":")

33 plt.xlabel("x")

34 plt.legend ()

35 #plt.savefig (" linear_basis_sum ")

36 plt.show()

Listing 8: plot hat basis sum.py

1 """

2 Plotting of hat basis function and its derivative

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

40

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16

17 N = 200

18 x = np.linspace(0, 1, N)

19 h = .3

20

21 plt.plot(x, bf.hat(.5, x, h), label=r"$\phi_ {0.5}(x)$")
22 plt.plot(x, bf.grad_hat (.5, x, h), label=r"$\phi_ {0.5}^\ prime(x)$", linestyle="--")

23 plt.legend ()

24 plt.title("the hat function and its derivative")

25 plt.xlabel("x")

26 #plt.savefig (" linear_basis ")

27 plt.show()

Listing 9: plot hat basis.py

1 """

2 Plotting of "even" quadratic basis function

3 """

4

5

6 import numpy as np

7 import matplotlib.pyplot as plt

8

9 import os

10 import sys

11 current_dir = os.getcwd ()

12 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

13 sys.path.append(top_dir)

14

15 from tools import basis_functions as bf

16

17 N = 1000

18 x = np.linspace(0, 1, N)

19

20 H = 6

21 vertices = np.linspace(0, 1, H)

22 h = vertices [1] - vertices [0]

23

24 func1 = 1 * bf.quad_e (.5, x, h)

25

26 plt.plot(x, func1)

27 plt.xlabel("x")

28 #plt.savefig (" quad_basis_even ")

29 plt.show()

Listing 10: plot quad basis even.py

1 """

2 Plotting of "odd" quadratic basis function

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

41

14 from tools import basis_functions as bf

15

16 N = 1000

17 x = np.linspace(0, 1, N)

18

19 H = 6

20 vertices = np.linspace(0, 1, H)

21 h = vertices [1] - vertices [0]

22

23 func2 = 1 * bf.quad_o (.5, x, h)

24

25 plt.plot(x, func2)

26 plt.xlabel("x")

27 #plt.savefig (" quad_basis_odd ")

28 plt.show()

Listing 11: plot quad basis odd.py

1 """

2 Plotting of a sum of quadratic basis functions scaled by some numbers to show

quadratic interpolation for the element

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16 N = 1000

17 x = np.linspace(0, 1, N)

18

19 H = 3

20 vertices = np.linspace(0, 1, H)

21 h = vertices [1] - vertices [0]

22

23 func1 = 1 * bf.quad(0, x, h)

24 func2 = 3 * bf.quad(.5, x, h)

25 func3 = 3 * bf.quad(1, x, h)

26 func_sum = func1 + func2 + func3

27

28 plt.plot(x, func1 , label=r"$ 1 \psi_ {0}(x)$", linestyle="--")

29 plt.plot(x, func2 , label=r"$ 3 \psi_ {0.5}(x)$", linestyle="--")

30 plt.plot(x, func3 , label=r"$ 3 \psi_ {1}(x)$", linestyle="--")

31 plt.plot(x, func_sum , label="sum of bases")

32

33 plt.xlabel("x")

34 plt.legend ()

35 #plt.savefig (" quad_basis ")

36 plt.show()

Listing 12: plot quad basis funky.py

1 """

2 Plotting of a sum of quadratic basis functions on one element

3 """

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7

42

8 import os

9 import sys

10 current_dir = os.getcwd ()

11 top_dir = os.path.abspath(os.path.join(current_dir , "..", ".."))

12 sys.path.append(top_dir)

13

14 from tools import basis_functions as bf

15

16 N = 1000

17 x = np.linspace(0, 1, N)

18

19 H = 3

20 vertices = np.linspace(0, 1, H)

21 h = vertices [1] - vertices [0]

22

23 func1 = 1 * bf.quad(0, x, h)

24 func2 = 1 * bf.quad(.5, x, h)

25 func3 = 1 * bf.quad(1, x, h)

26 func_sum = func1 + func2 + func3

27

28 plt.plot(x, func1 , label=r"$ \psi_ {0}(x)$", linestyle="--")

29 plt.plot(x, func2 , label=r"$ \psi_ {0.5}(x)$", linestyle="--")

30 plt.plot(x, func3 , label=r"$ \psi_ {1}(x)$", linestyle="--")

31 plt.plot(x, func_sum , label="sum of bases")

32

33 plt.xlabel("x")

34 plt.legend ()

35 #plt.savefig (" quad_basis ")

36 plt.show()

Listing 13: plot quad basis sum.py

1 import numpy as np

2

3 """-------------------- LINEAR BASIS FUNCTIONS -----------------------"""

4

5 epsilon = 1e-3

6

7 def hat(i, x, h):

8 """hat function with peak at i.

9

10 Args:

11 i (float): position of peak

12 x (float): variable

13

14 Returns:

15 float:

16 """

17 return np.piecewise(x, [x <= (i-h), (x > (i-h))&(x <= i) , (x > (i))&(x < (

i+h)) , x>=(i+h)],

18 [0 , lambda x: (x/h) + (1-(i/h)) , lambda x: (-x/h)

+ (1+(i/h)) , 0])

19

20

21 def grad_hat(i, x, h):

22 """derivative of hat function with peak at i

23

24 Args:

25 i (float): position of peak

26 x (float): variable

27

28 Returns:

29 float:

30 """

31 return np.piecewise(x, [x <= (i-h), (x > (i-h))&(x <= i), (x > (i))&(x < (i+h)), x

43

>=(i+h)],

32 [0 , 1/h , -1/h

, 0])

33

34

35 def hat_2d(i, x, h):

36 return hat(i[0], x[0], h) * hat(i[1], x[1], h)

37

38 def phi_and_hat_2d(i, x, h, hat_bdry =[]):

39 return phi(i[0], x[0], h) * phi(i[1], x[1], h, hat_bdry)

40

41

42 def phi(i, x, h, boundary =[0, 1]):

43 """Piecewise linear basis function

44

45 Args:

46 i (float): position of peak

47 x (float): variable

48 boundary (tuple): boundary conditions on

49

50 Returns:

51 float:

52 """

53

54 if (i == np.array(boundary)).any(): #np.abs(i - 0) < epsilon or np.abs(i - 1) <

epsilon:

55 return 0*x

56 else:

57 return hat(i, x, h)

58

59 def grad_phi(i, x, h, boundary =[0, 1]):

60 """derivative of hat function with peak at i

61

62 Args:

63 i (float): position of peak

64 x (float): variable

65

66 Returns:

67 float:

68 """

69 if (i == np.array(boundary)).any(): #np.abs(i - 0) < epsilon or np.abs(i - 1) <

epsilon:

70 return 0*x

71 else:

72 return np.piecewise(x, [x <= (i-h), (x > (i-h))&(x <= i), (x > (i))&(x < (i+h)

), x>=(i+h)],

73 [0 , 1/h , -1/h

, 0])

74

75 def phi_2d(i, x, h):

76 """2 dimensional hat function with peak at i.

77

78 Args:

79 i (tuple): position of peak

80 x (tuple): variable

81

82 Returns:

83 float:

84 """

85

86 return phi(i[0], x[0], h) * phi(i[1], x[1], h)

87

88 # some derivatives of previously declared functions

89 def dx_phi_2d(i, x, h):

90 return grad_phi(i[0], x[0], h) * phi(i[1], x[1], h)

44

91

92 def dy_phi_2d(i, x, h):

93 return phi(i[0], x[0], h) * grad_phi(i[1], x[1], h)

94

95 def dx_hat_2d(i, x, h):

96 return grad_hat(i[0], x[0], h) * hat(i[1], x[1], h)

97

98 def dy_hat_2d(i, x, h):

99 return hat(i[0], x[0], h) * grad_hat(i[1], x[1], h)

100

101

102 """-------------------- QUADRATIC BASIS FUNCTIONS -----------------------"""

103

104 def quad_o(i, x, h):

105 """function to generate even components of the quadratic basis

106

107 Args:

108 i (_float_): position of peak

109 x (_float_): variable

110 h (_type_): width

111

112 Returns:

113 float:

114 """

115 return np.piecewise(x, [x <= (i-h), (x > (i-h))&(x <= i+h - epsilon), x>=(i+h -

epsilon)],

116 [0 , lambda x: 1 - ((x-i)/h)**2 , 0

])

117

118 def quad_e(i, x, h):

119 """function to generate odd components of quadratic basis

120

121 Args:

122 i (_float_): position of peak

123 x (_float_): variable

124 h (_type_): width

125

126 Returns:

127 float:

128 """

129 return np.piecewise(x, [x <= (i-(2*h)), (x > (i-(2*h))) & (x <= i)

, (x > i) & (x < (i+(2*h))) , x>=(i+(2*h))],

130 [0 , lambda x: (1/(2*(h**2)))*(x-(i-(2*h)))*(x

-(i-h)) , lambda x: (1/(2*(h**2)))*(x-(i+(2*h)))*(x-(i+h)) , 0])

131

132 def quad(i, x, h):

133 """function for vertices of quadratic basis elements

134

135 Args:

136 i (_float_): position of peak

137 x (_float_): variable

138 h (_type_): width

139

140 Returns:

141 float:

142 """

143

144 if (round(i/h) % 2) == 1:

145 return quad_o(i, x, h)

146 else:

147 return quad_e(i, x, h)

148

149 def quad_2d(i, x, h):

150 """2 dimensional quadratic basis function

151

45

152 Args:

153 i (_float_): position of peak

154 x (_float_): variable

155 h (_type_): width

156

157 Returns:

158 float:

159 """

160 return quad(i[0], x[0], h) * quad(i[1], x[1], h)

161

162

163 def psi(i, x, h, boundary =[0, 1]):

164 """Piecewise Quadratic basis fuction with peak at i and element of size 2*h

165

166 Args:

167 i (float): peak of function

168 x (float): variable

169 h (float): half the width of element

170 boundary (list , optional): boundary of domain. Defaults to [0, 1].

171

172 Returns:

173 float:

174 """

175 if (i == np.array(boundary)).any():

176 return 0*x

177 else:

178 return quad(i, x, h)

179

180 def grad_psi(i, x, h, boundary =[0, 1]):

181 """Piecewise quadratic basis function with peak at i and element of size 2*h

182

183 Args:

184 i (float): peak of function

185 x (float): variable

186 h (float): half the width of element

187 boundary (list , optional): boundary of domain. Defaults to [0, 1].

188

189 Returns:

190 float:

191 """

192 if (i == np.array(boundary)).any():

193 return 0*x

194 else:

195 return np.gradient(quad(i, x, h), h)

196

197

198 def psi_2d(i, x, h):

199 """Piecewise Quadratic 2 dimensional basis function with peak at i and element of

size (2*h)**2

200

201 Args:

202 i (float): peak of function

203 x (float): variable

204 h (float): half the width of element

205

206 Returns:

207 float:

208 """

209 return psi(i[0], x[0], h) * psi(i[1], x[1], h)

210

211 def dx_psi_2d(i, x, h):

212 """the derivative with respect to x of a 2d quadratic basis function

213

214 Args:

215 i (float): peak of function

46

216 x (float): variable

217 h (float): half the width of element

218

219 Returns:

220 float:

221 """

222

223 return grad_psi(i[0], x[0], h) * psi(i[1], x[1], h)

224

225 def dy_psi_2d(i, x, h):

226 """the derivative with respect to y of a 2d quadratic basis function

227

228 Args:

229 i (float): peak of function

230 x (float): variable

231 h (float): half the width of element

232

233 Returns:

234 float:

235 """

236

237 return psi(i[0], x[0], h) * grad_psi(i[1], x[1], h)

238

239

240 """-------------------- EXTRA FUNCTIONS -----------------------"""

241

242

243 def conv_sol(solution , x, basis_func , vertices , h):

244 """Converts a solution vector (an array) into an interpolated function on x with

corresponding

245 basis functions (basis_func).

246

247 Args:

248 solution (numpy array): solution vector u to matrix equation Au=F

249 x (numpy array): domain over which we want this new function over

250 basis_func (function): one of the basis functions. The function is a variable

here so do not

251 put in any variables into it.

252 vertices (list): list of vertices which correspond to each entry of the

solution vector u

253 h (float): width of element. This is the same h as you would have used in

defining your mesh

254

255 Returns:

256 numpy array:

257 """

258

259 u = 0

260 for i, vert in enumerate(vertices):

261 u = u + (solution[i] * basis_func(vert , x, h))

262 return u

Listing 14: basis functions.py

1 """

2 Defining norms on functions to find error in calcualtions

3 """

4

5 import numpy as np

6

7 def l_squ_norm(f, x0):

8 """The l squared norm for functions of one variable , or here for 1 dimensional

arrays.

9

10 Args:

47

11 f (numpy array): function given by numpy array

12 x0 (numpy array): array on which the function is defined on

13

14 Returns:

15 float:

16 """

17 return np.trapz(np.abs(f)**2 , x0 , axis =0)

18

19 def l_squ_norm_2d(f, x0):

20 """The l squared norm for functions of two variable , or here for 2 dimensional

arrays.

21

22 Args:

23 f (numpy array): function given by numpy array

24 x0 (numpy array): tuple of arrays on which the function is defined on

25

26 Returns:

27 float:

28 """

29

30 return np.sqrt(np.trapz(np.trapz(np.abs(f)**2 , x0[0], axis =0), x0[1], axis =0))

Listing 15: norms.py

1 import numpy as np

2 #import basis_functions as bf

3

4 import os

5 import sys

6 current_dir = os.getcwd ()

7 top_dir = os.path.abspath(os.path.join(current_dir , ".."))

8 sys.path.append(top_dir)

9

10 from tools import basis_functions as bf

11

12 """-------------------------------------- APPROXIMATE VECTOR PRODUCTS

---"""

13 # this section contains functions which will predominantly use the numpy gradient

function to calculate derivatives

14

15 def grad_dot_grad(func0 , func1 , h):

16 """returns a dot product of gradients of two functions of two variables.

17 ie, grad(func0) dot grad(func1)

18

19 Args:

20 func0 (function): a numpy function of two variables

21 func1 (function): a numpy function of two variables

22

23 Returns:

24 numpy array:

25 """

26

27 dy_f0 , dx_f0 = np.gradient(func0 , h)

28 dy_f1 , dx_f1 = np.gradient(func1 , h)

29

30 return np.multiply(dx_f0 , dx_f1) + np.multiply(dy_f0 , dy_f1)

31

32 def func_mul_pdfunc(func0 , func1 , h, axis):

33 """returns a product of a function and a partial derivative of another function.

34 ie, func0 * partial_derivative(func1)

35

36 Args:

37 func0 (function): a numpy function of two variables

38 func1 (function): a numpy function of two variables

39 axis (0 or 1): pick 1 for partial derivative with respect to x or 0 for

48

partial derivative with respect to y

40

41 Returns:

42 numpy array:

43 """

44 pd_f1 = np.gradient(func1 , h, axis=axis)

45

46 return np.multiply(pd_f1 , func0)

47

48

49 """--- PRECISE VECTOR PRODUCTS

--"""

50 # this section contains precise evaluations of important vector products using pen and

paper maths as much as possible

51

52 def grad_dot_grad_phi2d(vert0 , vert1 , X, h):

53 """returns a dot product of gradients of two bf.phi_2d functions.

54 mathematically --> grad(phi2d) dot grad(phi2d)

55

56 Args:

57 vert0 (float): peak of associated basis function

58 vert1 (float): peak of associated basis function

59 X (numpy array): array to evaluate functions on

60 h (float): width between nodes

61

62 Returns:

63 numpy array:

64 """

65

66 x, y = X

67 i, j = vert0

68 a, b = vert1

69

70 dx_0 = bf.grad_phi(i, x, h) * bf.phi(j, y, h)

71 dy_0 = bf.phi(i, x, h) * bf.grad_phi(j, y, h)

72

73 dx_1 = bf.grad_phi(a, x, h) * bf.phi(b, y, h)

74 dy_1 = bf.phi(a, x, h) * bf.grad_phi(b, y, h)

75

76 return dx_0*dx_1 + dy_0*dy_1

77

78 def grad_dot_grad_psi2d(vert0 , vert1 , X, h):

79 """returns a dot product of gradients of two bf.psi_2d functions.

80 mathematically --> grad(psi2d) dot grad(psi2d)

81

82 Args:

83 vert0 (float): peak of associated basis function

84 vert1 (float): peak of associated basis function

85 X (numpy array): array to evaluate functions on

86 h (float): width between nodes

87

88 Returns:

89 numpy array:

90 """

91

92 x, y = X

93 i, j = vert0

94 a, b = vert1

95

96 dx_0 = bf.grad_psi(i, x, h) * bf.psi(j, y, h)

97 dy_0 = bf.psi(i, x, h) * bf.grad_psi(j, y, h)

98

99 dx_1 = bf.grad_psi(a, x, h) * bf.psi(b, y, h)

100 dy_1 = bf.psi(a, x, h) * bf.grad_psi(b, y, h)

101

49

102 return dx_0*dx_1 + dy_0*dy_1

103

104 def grad_dot_grad_hat2d(vert0 , vert1 , X, h):

105 """returns a dot product of gradients of two bf.hat_2d functions.

106 mathematically --> grad(psi2d) dot grad(psi2d)

107

108 Args:

109 vert0 (float): peak of associated basis function

110 vert1 (float): peak of associated basis function

111 X (numpy array): array to evaluate functions on

112 h (float): width between nodes

113

114 Returns:

115 numpy array:

116 """

117

118 x, y = X

119 i, j = vert0

120 a, b = vert1

121

122 dx_0 = bf.grad_hat(i, x, h) * bf.hat(j, y, h)

123 dy_0 = bf.hat(i, x, h) * bf.grad_hat(j, y, h)

124

125 dx_1 = bf.grad_hat(a, x, h) * bf.hat(b, y, h)

126 dy_1 = bf.hat(a, x, h) * bf.grad_hat(b, y, h)

127

128 return (dx_0*dx_1) + (dy_0*dy_1)

129

130 def gdg_phi_and_hat_2d(vert0 , vert1 , X, h, hat_bdry =[]):

131 """returns a dot product of gradients of two bf.hat_2d functions.

132 mathematically --> grad(phi2d) dot grad(psi2d)

133

134 Args:

135 vert0 (float): peak of associated basis function

136 vert1 (float): peak of associated basis function

137 X (numpy array): array to evaluate functions on

138 h (float): width between nodes

139 hat_bdry (list): location of boundary for hat functions

140

141 Returns:

142 numpy array:

143 """

144

145 x, y = X

146 i, j = vert0

147 a, b = vert1

148

149 dx_0 = bf.grad_phi(i, x, h) * bf.phi(j, y, h, hat_bdry)

150 dy_0 = bf.phi(i, x, h) * bf.grad_phi(j, y, h, hat_bdry)

151

152 dx_1 = bf.grad_phi(a, x, h) * bf.phi(b, y, h, hat_bdry)

153 dy_1 = bf.phi(a, x, h) * bf.grad_phi(b, y, h, hat_bdry)

154

155 return (dx_0*dx_1) + (dy_0*dy_1)

Listing 16: vector products.py

50

	Background
	Introduction
	Computational Methods
	Background of the Finite Element Method

	One Dimensional Poisson Problem
	Derivation of the Weak Formulation
	Discretisation of the the Function Space
	Basis Functions
	Discretisation of the Weak Formulation
	Linear System Representation
	Matrix A
	Matrix F
	Numerical Implementation and Solution

	Two Dimensional Poisson Problem
	The Weak Formulation
	Basis Functions and Discretisation
	Implementation and Results
	Another Two Dimensional Poisson Problem
	A note on Error Analysis

	Heat Equation
	Discretisation of Time
	The Weak Formulation and Spacial Discretisation
	Implementation and Results

	Stokes Equations
	The Weak Formulation
	Basis Functions
	Discretisation of the Weak Formulation
	Matrix Formulation
	Implementation and Results
	Error Analysis

	Conclusion
	Further Reading
	Acknowledgements
	References
	Code

